Cyclopropyl Building Blocks in Organic Synthesis, 50^[‡]

An Easy Access to Bicyclic Peptides with an Octahydro[2*H*]pyrazino[1,2-*a*]pyrazine Skeleton

Vladimir N. Belov, $^{[a][++]}$ Christian Funke, $^{[a]}$ Thomas Labahn, $^{[b]}$ Mazen Es-Sayed, $^{[c]}$ and Armin de Meijere $^{*[a]}$

Dedicated to Professor Kurt Heyns on the occasion of his 90th birthday

Keywords: Peptidomimetics / Octahydro[2*H*]pyrazino[1,2-*a*]pyrazine / Diastereoselectivity / Tripeptides / Crystal structures

A new route to octahydrospiro(cyclopropane-1,1'-[2H]-pyrazino[1,2-a]pyrazine)-3',6',9'-triones 12–15 has been developed. Michael additions of primary amines onto methyl 2-Me or *tert*-butyl 2-Bu 2-chloro-2-cyclopropylidene-acetates, followed by DCC- or EDC-induced coupling with Boc- or FmocGlyOH, deprotection and cyclization led to α -amino esters 4a–c and chlorohexahydrodiazepinediones 5a–c, or in the case of 2-Bu to the α -amino ester 7 exclusively. This reaction sequence with (S)-BocPheOH and (S)-BocTrpOH diastereoselectively gave (3'R,5'S)-9a,b and (2'S,6'R)-11a,b as the main products. Further peptide coupling, deprotection and cyclization with 4a–c yielded

octahydrospiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazino)-3',6',9'-triones (7'S,9a'S)-12a–d, (6a'S,11a'S)-12e, (7'S,9a'R)-13a–d and (6a'S,11a'R)-13e which were easily separated. The α -amino esters 9a,b yielded (4'S,9a'R)-14a (=15a) and (4'S,9a'R)-14b (=15b), (4'S,7'S,9a'R)-14c and (4'R*,7'S*,9a'S*)-15c. The formation of compounds with three stereogenic centers 14c and 15c was accompanied by partial racemization. The versatility of the reported reaction sequence is limited by the steric availability of the secondary amino group in the intermediates 4, 9 and 10, as well as in the Michael adducts formed from primary amines and 2-Me.

Introduction

Multifunctional small molecules are versatile and often even essential building blocks for short and elegant routes in organic synthesis. In this respect the readily available methyl 2-chloro-2-cyclopropylideneacetate (**2-Me**)^[1a] is an outstanding example. [1] It was our aim to investigate the utility of this compound for the parallel automated synthesis of perhydrospiro(cyclopropane-1,1'-[2*H*]pyrazino-[1,2-*a*]pyrazine)-3',6',9'-triones (1), a potentially useful class of geometrically defined peptidomimetics [2] (Figure 1).

These bicyclic tripeptides have an octahydro[2H]pyrazino[1,2-a]pyrazine skeleton, and thereby constitute a structurally interesting class of compounds which has previously been noted only in three publications, [3] whereas perhydro-

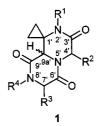


Figure 1

pyrazino[2,3-b]pyrazines are well documented throughout the literature. [4] In the most recent work, [3c] octahydro-[2H]pyrazino[1,2-a]pyrazines were especially prepared in the search for improved antibacterial agents, but the flexibility of the reaction sequence reported by these authors is somewhat limited, and the authors also mention that previously published procedures [3a,b] could not be reproduced.

Results and Discussion

The Michael additions of primary amines onto methyl 2-chloro-2-cyclopropylideneacetate (2-Me) yield adducts which can be coupled with BocGlyOH to give dipeptides 3a-c (Scheme 1). Compared with the primary amino group in natural amino acids, the amino group in the Michael adducts of 2-Me is considerably more sterically encumbered. To increase the yield in the peptide coupling, a three-

Universitetsky Pr. 2, 198904 St. Petersburg, Russia.

^[+] Part 48: C. Zorn, A. Goti, A. Brandi, K. Johnsen, M. Noltemeyer, S. I. Kozhushkov, A. de Meijere, *J. Org. Chem.*, in press; Part 49: M. Brandl, S. I. Kozhushkov, D. S. Yufit, J. A. K. Howard, A. de Meijere, *Eur. J. Org. Chem.* 1998, 2785–2795.

 [[]a] Institut für Organische Chemie and
 [b] Institut für Anorganische Chemie, Georg-August-Universität, Tammannstraße 2-4, D-37077 Göttingen, Germany Fax: (internat.) + 49(0)551/399475

E-mail: ameijer1@uni-goettingen.de
Bayer AG, Landwirtschaftzentrum,
Alfred-Nobel-Straße 50, Geb. 6510, D-40789 Monheim, Germany

E-mail: mazen.es-sayed.me@bayer-ag.de

[++] Permanent address: St. Petersburg State University, Chemistry
Department,

fold excess of BocGlyOH and DCC in the presence of pyridine was used to accelerate the acylation. However, the benzylamine adduct of **2-Me** failed to react with (S)-BocProOH or even (S)-BocAlaOH under the conditions which were appropriate for couplings. Unlike ordinary peptide couplings, a lack of reactivity for the benzylamine adduct was even observed towards activated esters like N-carboxy-anhydrides (NCA's) and FmocGlyOC₆F₅ in the presence of pyridine or NEt₃. Deprotection of $3\mathbf{a} - \mathbf{c}$ with trifluoroacetic acid (TFA) and basic workup were accompanied by cyclization and gave separable mixtures of the hexahydropyrazinone-type α -amino esters $4\mathbf{a} - \mathbf{c}$ and the chlorohexahydrodiazepinediones $5\mathbf{a} - \mathbf{c}$. The skeleton of the α -amino esters 4

Scheme 1. For details see Table 1

Table 1. α -Amino esters $4\mathbf{a} - \mathbf{c}$ and the chlorohexahydrodiazepinediones $5\mathbf{a} - \mathbf{c}$ from methyl 2-chloro-2-cyclopropylideneacetate (2-Me)

	\mathbb{R}^1	4 (%)[a]	5 (%)[a]
a	n-pentyl	22	60
b	Bzl	18	60
c	PhCH ₂ CH ₂	18	63

[[]a] Overall yields.

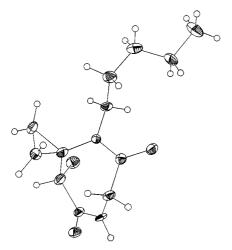


Figure 2. Structure of the chlorohexahydrodiazepinedione 5a in the crystal

has previously been found in the hydrolysis product of the naturally occurring lycomarasmine. [5]

The constitution of the chlorohexahydrodiazepinedione **5a** was proved by an X-ray crystal structure analysis^[6] (Figure 2).

In order to favor the formation of the six-membered ring α -amino esters **4** over that of the seven-membered ring lactams **5** from the amine adducts of 2-chloroacrylates **2** the *tert*-butyl ester **2-***t***Bu**^[7] was applied, and appropriate modifications of several steps in the reaction sequence were introduced. Thus, addition of 2-phenylethylamine to **2-***t***Bu**, subsequent coupling with a twofold excess of FmocGlyOH in the presence of pyridine, deprotection with aqueous NaOH and cyclization by treatment with basic Al₂O₃ gave **7** in 61% overall yield (Scheme 2).

An interesting kinetic resolution was observed when chiral nonracemic amino acids were used in this coupling-

Scheme 2

Scheme 3. For details see Table 2

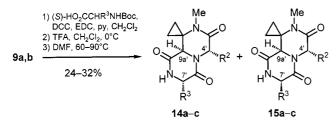
Table 2. Six-membered ring amino esters (3' R,5' S)-9a,b, (3' S,5' S)-10a,b and seven-membered ring lactams (2' S,6' R)-11a,b obtained from 2-Me

	\mathbb{R}^2	9 (%) ^[a]	10 (%)[a]	11 (%) ^[a]
a	Bzl	20	2 2	19
b	(indol-3''-yl)CH ₂	21		22

[[]a] Overall yields.

cyclization sequence (Scheme 3). In this case the methylamine Michael adduct of **2-Me** with the least sterically encumbered secondary amino group was used, and it was successfully coupled with (S)-BocPheOH and (S)-BocTrpOH to yield **8a,b**. The (2S)-isomers of **8a,b**, after deprotection and cyclization, reacted almost exclusively to the α -amino esters (3'R, 5'S)-**9a,b**, whereas the (2R) isomers formed single diastereomers of the chlorolactams (2'S, 6'R)-**11a,b** and only traces of the α -amino esters (3'S, 5'S)-**10a,b**. The struc-

Scheme 4. For details see Table 3


ture including the absolute configurations of the α -amino ester (3'R,5'S)-9 α was established by X-ray crystal structure analyses of several bicyclic tripeptides obtained after incorporation of another amino acid residue (see below), while the configurations of the asymmetric centers in the chlorolactams (2'S,6'R)-11 α ,b were assigned on the basis of 2D-NOESY NMR experiments showing cross-peaks between H-2' and H-6'.

By repeating the sequence of coupling with Boc-protected amino acids, deprotection and cyclization as described above for adducts of **2-Me**, but with the α -amino esters 4 and 9, bicyclic tripeptides 12-15 were obtained (Schemes 4 and 5). The amino group of 4 was found to be more easily sterically accessible than those in the analogous α -amino esters 9 and 10 with their additional α -alkyl groups. Thus, 4a smoothly coupled with (S)-BocPheOH, 4b with (S)-BocMetOH, (S)-BocPheOH and (S)-BocProOH and 4c with (S)-BocTrpOH to give tricyclic peptides each as separable pairs of diastereomers 12a-e and 13a-e, respectively. Their configurations were determined by X-ray crystal structure analyses and/or by 2D-NOESY NMR experiments. Based on the assumption that the (S) configurations of the incorporated amino acids were retained at C-7' or C-6a', respectively, the configurations at C-9a' for 12a-d and at C-11a' for 12e can be assigned as (S) and (R) for 13. Interestingly, all 9a'S-isomers 12a-d and the 11a'S-

Table 3. Transformations of **4** to the octahydrospiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-triones (7'S,9a'S)-12a-d, (6a'S,11a'S)-12e, (7'S,9a'R)-13a and (6a'S,11a'R)-13e

	\mathbb{R}^1	\mathbb{R}^3	R ⁴	$[\alpha]_D^{20}$ of $12^{[a]}$	$[\alpha]_D^{20}$ of $13^{[a]}$	yields (12 + 13) (%)
a b c d e	n-pentyl Bzl Bzl PhCH ₂ CH ₂ Bzl	Bzl $CH2CH2SMe$ Bzl $(indol-3''-yl)CH2$ $R3 = R4 = (CH2)3$	Н Н Н Н	-47.2 (0.70) -59.7 (0.14) -93.6 (0.22) -84.9 (1.39) -42.1 (0.21)	+ 7.5 (0.32) +28.8 (0.17) +31.1 (0.17) +60.3 (0.63) +41.4 (0.29)	50 ^[b] 16 and 19 ^[c] 59 ^[b] 56 ^[b] 76 ^[b]

[[]a] Optical rotations in methanol. - [b] Yields of the diastereomeric mixtures resulting from $\mathbf{4a} - \mathbf{c}$. - [c] Yields of separated diastereomers from $\mathbf{4b}$.

Scheme 5. For details see Table 4

Table 4. Transformations of the α -amino esters 8 to the octahydrospiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-triones 14 and 15

	\mathbb{R}^2	\mathbb{R}^3	14 (%)	15 (%)
a	Bzl	H	26 ^[a]	8
b	(indol-3''-yl)CH ₂	H	32 ^[a]	
c	Bzl	CH ₂ CH ₂ SMe	16	

[[]a] 14a and 15a as well as 14b and 15b are identical for $R^3 = H$.

isomer 12e had a negative sign for the optical rotations, while all 9a'*R*-isomers 13a-d and the 11a'*R*-isomer 13e had positive rotations (Table 3).

The relative configurations of **12c** and **12d** were determined by X-ray crystal structure analysis (Figure 3).

The acylation of the cyclic peptide **9** with Boc-protected amino acids was found to be more difficult which must be due to the sterical shielding of the secondary amino group by the substituent at C-4'. Even BocGlyOH formed the corresponding **14a** (identical with **15a**) and **14b** (identical with **15b**) only in low yields (26 and 32%, respectively), and the DCC-induced coupling with (S)-BocMetOH proceeded even less efficiently. To improve the yield a sixfold excess of (S)-BocMetOH and a threefold excess of DCC as well as prolonged reaction times were required. The more drastic reaction conditions must be responsible for partial racemization at the stereogenic center of the newly attached (S)-BocMetOH leading to two diastereomers **14c** and **15c** which could be separated by chromatography.

The structure of the main diastereomer 14c with the absolute configurations at C-4′, C-7′ and C-9a′ was confirmed by X-ray crystal structure analysis due to the presence of sulfur as a heavy atom (Figure 4). For the bicyclic tripeptides 14a ($\equiv 15a$) and 14b ($\equiv 15b$) only the relative configurations at C-4′ and C-9a′ have been proved rigorously, but 14a ($\equiv 15a$) and 14b ($\equiv 15b$) were not accompanied by any other diastereomer, and therefore, based on the reasonable assumption that no racemization occurred during their formations, R configuration at C-3′ in compounds 9a, b and thus R configuration at C-9a′ in 14a, b can be attributed.

The minor diastereomer 15c displayed strong cross-peaks between the signals of 9a'-H and CH_2 Ph and strong cross-peaks between 9a'-H and 7'-H in the 2D-NOESY NMR

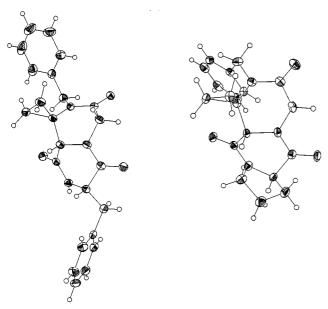


Figure. 3. Structures of octahydrospiro(cyclopropane-1,1'-[2*H*]pyr-azino[1,2-*a*]pyrazine)-3',6',9'-triones **12c** and **12e** in the crystal

spectrum. Therefore, the relative $(4'R^*,7'S^*,9a'S^*)$ configuration was assigned to this compound.

In conclusion, a new approach to a novel class of geometrically defined tripeptides 12–15 with an octahydrospiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-trione skeleton starting from the easily accessible building block 2-Me has been developed. This methodology can be adapted to a combinational automated parallel synthesis in solution phase. Further work along these lines is currently in progress.

Experimental Section

General: ¹H- and ¹³C-NMR spectra: Bruker AW 250 at 250 MHz and 62.9 MHz, respectively. NOESY spectra: Bruker AMX 300 at 300 MHz. Chemical shifts in CDCl₃ or CD₃OD are reported in δ values relative to tetramethylsilane ($\delta = 0.00$); for ¹H NMR chloroform ($\delta = 7.26$) or methanol ($\delta = 3.30$) and for ¹³C NMR chloroform ($\delta = 77.00$) or methanol ($\delta = 49.30$) were used as internal standards unless otherwise stated. The DEPT-135 pulse sequence was used for the determination of signal types: + = primary or tertiary carbon, - = secondary carbon, Cquat = quaternary carbon. - IR spectra: Bruker IFS 66. - Low-resolution EI mass spectra: Varian CH-7 with Varian Aerograph 1740 spectrometer with an ionizing voltage of 70 eV. - High-resolution mass spectra: VG-70-250S instrument. - Elemental analyses were performed by the Mikroanalytisches Laboratorium im Institut für Organische Chemie, Universität Göttingen. - Melting points are uncorrected. Preparative column chromatography: Merck silica gel 60 (63-200 μm), ICN neutral alumina (50-200 μm) or Fluka basic alumina type 5016A. – All reactions were carried out under dry nitrogen or argon in oven- and/or flame-dried glassware. Unless otherwise specified, aqueous solutions of NaHCO3, Na2CO3 and KHSO₄ were used. Solvents were dried according to commonly used procedures.

General Procedure for Michael Addition and DCC-Coupling to 3 and 8 (GP 1): To a solution of primary amine (7.67–15.0 mmol) or to a mixture of methylamine hydrochloride (20.5–36.2 mmol) and NEt₃ (25.7–45.2 mmol) in THF (10–30 mL) at 0 °C was ad-

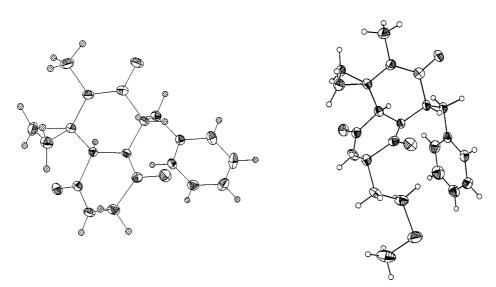


Figure. 4. Structures of octahydrospiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-triones 14a (≡15a) and 14c in the crystal

ded dropwise a solution of methyl 2-chloro-2-cyclopropylideneace-tate (**2-Me**)^[1a] (13.4–30.0 mmol) in THF (10–30 mL) and stirring was continued for 4–5 h. In the case of methylamine addition to **2-Me** an ultrasonic bath was applied every hour for 5 min, and when the reaction was complete, the solid was filtered off. The filtrate was treated with the Boc-protected amino acid (15.3–45.0 mmol) in THF (20–75 mL), pyridine (15.3–279 mmol) or DMAP (1.80–3.27 mmol) and DCC (15.3–45.0 mmol) in THF (20–30 mL) or CH₂Cl₂ (20 mL) at 0 °C. After stirring overnight the precipitated DCU was removed by filtration and the solution was evaporated in vacuo. The residue was dissolved in CH₂Cl₂ (10–30 mL), and the solution was washed with 15% KHSO₄ solution, H₂O, three times with saturated NaHCO₃ solution and dried (MgSO₄ or Na₂SO₄). After concentration in vacuo purification of the residue was performed by column chromatography on silica gel.

General Procedure for Deprotection and Cyclization to 4 and 5 or 9, **10 and 11 (GP 2):** To a stirred solution of **3** or **8** (4.31–14.3 mmol) in CH₂Cl₂ (10-30 mL) was added dropwise trifluoroacetic acid (TFA, 29.5-98.2 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature with stirring overnight and was poured into a well stirred mixture of Na₂CO₃ or NaHCO₃ solutions (pH = 9-10) and CH₂Cl₂. The organic layer was separated, and the aqueous layer was extracted twice with CH2Cl2 (100-300 mL). Combined organic solutions were washed with brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was treated with diethyl ether and the precipitate was filtered off to give pure 5 or 11 after recrystallization from the appropriate solvent. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography on silica gel to yield 4 or 9 and 10. Purification and separation could also be achieved by column chromatography on basic alumina.

General Procedure for Peptide Coupling, Deprotection and Cyclization to 12 and 13 or 14 and 15 (GP 3): A stirred solution of 4 or 9 (0.69-1.41 mmol), Boc-protected amino acid (0.75-2.80 mmol) and pyridine (0.89-3.10 mmol) in CH₂Cl₂ (3-10 mL) was treated with EDC (0.75-0.89 mmol) or a solution of DCC (1.29-2.74 mmol) in CH₂Cl₂ (3-10 mL) at 0 °C. After stirring overnight at the same temp. the precipitated DCU was filtered off and washed with CH₂Cl₂. The filtrate was shaken with 15% solutions of KHSO₄ or HCl (1 M), H₂O and saturated NaHCO₃ solution. The organic layer was dried (Na₂SO₄ or MgSO₄), concentrated in vacuo, and the residue was purified by column chromatography on silica gel. The crude product was dissolved in CH₂Cl₂ (3-4 mL) and treated with TFA (9.82-13.2 mmol) at 0 °C. The stirred reaction mixture was allowed to warm to room temperature overnight and poured into a well stirred mixture of Na₂CO₃ and NaHCO₃ solutions (pH = 9-10) and CH₂Cl₂. The aqueous layer was extracted two times with CH2Cl2, and the combined organic layers were dried (Na₂SO₄). After evaporation of the solvent the residue was dissolved in DMF (2.5-4 mL) and heated up to 60-130 °C until the cyclization reaction was complete (TLC). Isolation of the products was achieved by crystallization from the appropriate solvent or/and separation by column chromatography on silica gel or neutral alumina.

Methyl Hexahydro-6'-oxo-1'-pentylspiro(cyclopropane-1,2'-pyrazine)-3'-carboxylate (4a) and 6'-Chlorohexahydro-4'-pentylspiro-(cyclopropane-1,5'-[1*H*][1,4]diazepine)-3',7'-dione (5a): Pentylamine (668 mg, 7.67 mmol) in THF (10 mL) was treated with a solution of methyl 2-chloro-2-cyclopropylideneacetate (2-Me, 1.12 g, 7.64 mmol) in THF (10 mL), BocGlyOH (2.68 g, 15.3 mmol) in THF (20 mL), pyridine (1.21 g, 15.3 mmol) and DCC (3.16 g, 15.3 mmol) in THF (20 mL) according to GP 1. After workup and

column chromatography on silica gel (150 g, petroleum ether/diethyl ether, 1:1), 2.85 g (95%) of **3a** ($R_{\rm f} = 0.26$) was obtained as a yellow oil. Deprotection of 3a in CH₂Cl₂ (10 mL) with TFA (6.00 g, 52.6 mmol) and basic workup according to GP 2 afforded a semisolid which was purified on basic alumina (100 g, CH₂Cl₂/MeOH, 100 : 2). – Fraction I ($R_f = 0.48$): 429 mg (22% overall) of **4a** as a colorless oil. – IR (film): $\tilde{v} = 3321$ (NH) cm⁻¹, 3091, 2953, 2869, 1737 (C=O), 1666 (C=O), 1433, 1342, 1202, 1024, 971, 881, 789, 730. – ¹H NMR (CDCl₃): $\delta = 0.71 - 0.79$ (m, 1 H, cpr-H), 0.83 $(t, J = 7.1 \text{ Hz}, 3 \text{ H}, \text{CH}_3), 0.92 - 1.00 \text{ (m, 1 H, cpr-H)}, 1.15 - 1.33$ (m, 8 H, cpr-H and pent-H), 2.49 (br. s, 1 H, NH), 2.60-2.70 (m, 1 H), 3.06 (s, 1 H, 3'-H), 3.44–3.54 (m, 1 H), AB system (δ_A = 3.49, $\delta_{\rm B} = 3.56$, J = 16.1 Hz, 2 H), 3.72 (s, 3 H, CH₃O). $- {}^{13}{\rm C}$ NMR (CDCl₃): $\delta = 8.90$ (-, cpr-C), 13.67 (+, CH₃), 15.64 (-, cpr-C), 22.33 (-), 28.44 (-), 28.75 (-), 39.78 (C_{quat}, cpr-C), 41.23 (-), 48.06 (-), 52.45 (+, CH₃O), 63.08 (+, C-3'), 172.51 (C_{quat}, C=O), 172.92 (C_{quat} , C=O). – MS (70 eV); m/z (%): 254 (47) [M^{+}], 239 (2) $[M^+ - CH_3]$, 226 (18) $[M^+ - C_2H_4]$, 212 (31), 195 (100) $[M^+ - C_2H_3O_2]$, 167 (54), 155 (97), 123 (34), 96 (32). $C_{13}H_{22}N_2O_3$ (254.3): calcd. C 61.39, H 8.72, N 11.01; found C 61.11, H 9.00, N 10.93. – Fraction II ($R_f = 0.42$): 1.19 g (60%) overall) of 5a as colorless crystals, m.p. 139 °C (ethyl acetate/petroleum ether). – IR (KBr): $\tilde{v} = 3264$ (NH) cm⁻¹, 2957, 2929, 2870, 1676 (C=O), 1641 (C=O), 1460, 1423, 1326, 1235, 1042, 938, 795, 720, 607. - ¹H NMR (CDCl₃): $\delta = 0.87$ (t, J = 6.9 Hz, 3 H, CH₃), 1.14-1.38 (m, 7 H, cpr-H and pent-H), 1.41-1.49 (m, 2 H, cpr-H), 1.70-1.73 (m, 1 H, cpr-H), 3.07-3.19 (m_c, 1 H, 2'-H), 3.68-3.81 (m, 2 H, CH₂N), 3.83 (s, 1 H, 6'-H), 4.42 (dd, J = 1.9, $J = 14.5 \text{ Hz}, 1 \text{ H}, 2'\text{-H}, 7.34 (d, J = 6.3 \text{ Hz}, 1 \text{ H}, \text{ NH}). - {}^{13}\text{C}$ NMR (CDCl₃): $\delta = 13.69 (+, CH_3), 14.96 (-, cpr-C), 19.88 (-, cpr-C)$ cpr-C), 22.31 (-), 29.07 (-), 29.18 (-), 41.79 (C_{quat}, cpr-C), 47.42 (-), 50.20 (-), 64.68 (+, C-6'), 168.37 (C_{quat}, C=O), 169.84 (C_{quat}, C=O). - MS (70 eV); m/z (%): 260/258 (0.1/0.1) [M⁺], 223 (76) $[M^+ - Cl]$, 166 (100) $[M^+ - Cl - C_4H_9]$. $- C_{12}H_{19}ClN_2O_2$ (258.8): calcd. C 55.70, H 7.40, Cl 13.70, N 10.83; found C 55.96, H 7.63, Cl 13.78, N 10.91.

X-Ray Crystal Structure Analysis of 5a: ^[6] Single crystal from ethylacetate/petroleum ether, $0.80 \times 1.00 \times 1.00$ mm, T=150 K, Stoe-Siemens-AED four-circle diffractometer, $Mo-K_a$ (graphite monochromator); $\lambda=71.073$ pm, empirical formula $C_{12}H_{19}ClN_2O_2$, space group $P2_1/c$; unit cell dimensions: a=1548.9 pm; b=657.7 pm; c=1325.0 pm; $\alpha=90^\circ$; $\beta=107.56^\circ$; $\gamma=90^\circ$; $d_{calcd}=1.336$ g/cm³, V=1.2868 nm³, Z=4, $\mu(Mo-K_a)=0.290$ mm⁻¹; range for data collection: $3.56 \le \theta \le 22.50^\circ$; index ranges: $-11 \le h \le 16$, $-1 \le k \le 7$, $-14 \le l \le 14$; 1660 independent reflections [R(int)=0.1506]. Structure solutions: Direct methods (SHELXS-97^[8]) and structure refinement (SHELXL-97^[9]): Full-matrix least-squares on F^2 , R values: R1=0.0701, wR2=0.2001 (for all data with 186 parameters and 60 restraints); goodness-of-fit on $F^2=1.121$. Extinction coefficient =0.041; largest diff. peak and hole =0.0718 e nm⁻³.

Methyl 1'-Benzylhexahydro-6'-oxospiro(cyclopropane-1,2'-pyrazine)-3'-carboxylate (4b) and 4'-Benzyl-6'-chlorohexahydrospiro-(cyclopropane-1,5'-[1H][1,4]diazepine)-3',7'-dione (5b): From benzylamine (1.61 g, 15.0 mmol) in THF (30 mL), methyl 2-chloro-2-cyclopropylideneacetate (2-Me, 2.20 g, 15.0 mmol) in THF (30 mL), BocGlyOH (7.88 g, 45.0 mmol) in THF (75 mL), pyridine (22.1 g, 279 mmol) and DCC (9.27 g, 45.0 mmol) in THF (30 mL) according to GP 1 was obtained after separation on silica gel (600 g, hexane/diethyl ether, 3:2) 6.16 g (100%) of 3b ($R_{\rm f}=0.2$, hexane/diethyl ether, 1:1). 3b in CH₂Cl₂ (20 mL) was deprotected with TFA (11.2 g, 98.2 mmol) according to GP 2. Two products were obtained after usual workup and purification of the oily resi-

due by column chromatography on silica gel (75 g, CH₂Cl₂/MeOH, 100 : 5). – Product I ($R_f = 0.23$): 760 mg (18% overall) of **4b** as a colorless oil which crystallized slowly to a white solid, m.p. 45-47 °C. – IR (KBr): $\tilde{v} = 3426$ (NH) cm⁻¹, 3297 (NH), 2952, 1734 (C=O), 1662 (C=O), 1496, 1419, 1343, 1212, 1147, 1032, 730, 704. – ¹H NMR (CDCl₃): $\delta = 0.77$ (ddd, J = 5.0, J = 7.3, J =10.6 Hz, 1 H, cpr-H), 0.93 (ddd, J = 5.1, J = 6.5, J = 10.6 Hz, 1 H, cpr-H), 1.12 (dt, J = 6.9, J = 11 Hz, 1 H, cpr-H), 1.34 (dt, J =6.9, J = 11 Hz, 1 H, cpr-H), 2.58 (br. s, 1 H, NH), 3.03 (s, 1 H, 3'-H), 3.45 (s, 3 H, CH₃O), AB system ($\delta_A = 3.71$, $\delta_B = 3.73$, $J_{AB} = 16.0 \text{ Hz}, 2 \text{ H}, 5'\text{-H}), 4.20 \text{ (d, } J = 15.6 \text{ Hz}, 1 \text{ H}, CHHPh),$ 4.55 (d, J = 15.6 Hz, 1 H, CH*H*Ph), 7.09-7.13 (m, 2 H, Ar-H), 7.16-7.28 (m, 3 H, Ar-H). - Addition of an excess of TFA shifts the following signals: $3.03 \rightarrow 3.45$, $3.79 \rightarrow 3.92$, $2.58 \rightarrow 5.55$. – ¹³C NMR (CDCl₃): $\delta = 8.81$ (-, cpr-C), 15.04 (-, cpr-C), 40.80 (C_{quat}, cpr-C), 45.61 (-), 48.00 (-), 52.34 (+, CH₃O), 65.82 (+, C-3'), 127.10 (+, C-para), 127.25 (+, 2 C), 128.38 (+, 2 C), 137.70 $(C_{quat}, C-ipso)$, 172.65 $(C_{quat}, C=O)$, 173.06 $(C_{quat}, C=O)$. – MS (70 eV); m/z (%): 274 (12) [M⁺], 246 (12) [M⁺ - C₂H₄], 218 (16), 215 (22) $[M^+ - C_2H_3O_2]$, 202 (36), 187 (28) $[M^+ - C_2H_3O_2 C_2H_4$], 186 (19), 142 (24), 104 (45) $[C_7H_4O^+]$, 91 (100) $[C_7H_7^+]$. – C₁₅H₁₈N₂O₃: calcd. 274.1317; found 274.1317 (MS). – Product II: 2.50 g (60% overall) of **5b** as colorless crystals, m.p. 175 °C (ethanol/heptane). – IR (KBr): $\tilde{v} = 3417$ (NH) cm⁻¹, 3204 (NH), 3087, 2955, 1674 (C=O), 1658 (C=O), 1496, 1464, 1419, 1350, 1329, 1235, 1047, 963, 802, 721. - ¹H NMR (CD₃OD): $\delta = 1.03-1.17$ (m, 1 H, cpr-H), 1.20-1.30 (m, 1 H, cpr-H), 1.40-1.55 (m, 2 H, cpr-H), 3.71 (d, J = 14.7 Hz, 1 H), 4.12 (s, 1 H, 6'-H), 4.45 (d, J =15.8 Hz, 1 H), 4.68 (d, J = 14.7 Hz, 1 H), 5.24 (d, J = 15.8 Hz, 1 H), 7.10-7.18 (m, 2 H, Ar-H), 7.20-7.34 (m, 3 H, Ar-H). - 13 C NMR (CD₃OD): $\delta = 15.12$ (-, cpr-C), 20.27 (-, cpr-C), 43.44 (C_{quat}, cpr-C), 47.98 (-, C-2'), 53.97 (-, CH₂Ph), 66.59 (+, C-6'), 127.32 (+, 2 C), 128.47 (+, C-para), 130.00 (+, 2 C), 139.84 (C_{quat}, C-ipso), 170.52 (C_{quat} , C=O), 173.53 (C_{quat} , C=O). – MS (70 eV); m/z (%): 278 (0.5) [M⁺], 250 (1) [M⁺ - C₂H₄], 243 (100) [M⁺ -C1], 215 (5) $[M^+ - C1 - C_2H_4]$, 186 (83) $[M^+ - C_7H_8]$, 104 (5) $[C_7H_4O^+]$, 91 (100) $[C_7H_7^+]$. - $C_{14}H_{15}ClN_2O_2$ (278.7): calcd. C 60.33, H 5.42, N 10.05; found: C 60.45, H 5.34, N 9.73.

Methyl Hexahydro-6'-oxo-1'-(2-phenylethyl)spiro(cyclopropane-1,2'-pyrazine)-3'-carboxylate (4c) and 6'-Chlorohexahydro-4'-(2phenylethyl)spiro(cyclopropane-1,5'-[1H][1,4]diazepine)-3',7'-dione (5c): 2-Phenylethylamine (1.62 g, 13.4 mmol) in THF (20 mL) was treated with a solution of methyl 2-chloro-2-cyclopropylideneacetate (2-Me, 1.96 g, 13.4 mmol) in THF (20 mL), BocGlyOH (4.69 g, 26.8 mmol), pyridine (2.12 g, 26.8 mmol) and DCC (5.53 g, 26.8 mmol) in THF (30 mL) according to GP 1. After workup and column chromatography on silica gel (200 g, petroleum ether/diethyl ether, 1:1), 5.21 g (92%) of **3c** ($R_f = 0.31$) was obtained as a yellow oil. Deprotection of 3c in CH₂Cl₂ (30 mL) with TFA (11.2 g, 98.2 mmol) and basic workup according to GP 2 afforded a semisolid which gave two products after usual workup and purification of the oily residue on silica gel (75 g, CH₂Cl₂/MeOH, 100:5). – Product I: 695 mg (18% overall) of 4c ($R_f = 0.33$) as a pale yellow oil. – IR (film): $\tilde{v} = 3327$ (NH) cm⁻¹, 3026, 2950, 2857, 1734 (C= O), 1706 (C=O), 1652 (C=O), 1456, 1419, 1272, 1207, 1143, 1029, 735, 701. - ¹H NMR (CDCl₃): $\delta = 0.64-0.73$ (m, 1 H, cpr-H), 0.91-1.00 (m, 1 H, cpr-H), 1.19-1.32 (m, 2 H, cpr-H), 2.50 (br. s, 1 H, NH), 2.55-2.67 (m, 2 H), 3.04-3.16 (m, 1 H), 3.10 (s, 1 H, 3'-H), 3.51–3.66 (m, 1 H), AB system ($\delta_A = 3.54$, $\delta_B = 3.63$, $J_{AB} =$ 15.9 Hz, 2 H), 3.74 (s, 3 H, CH₃O), 7.14-7.31 (m, 5 H, Ar-H). -¹³C NMR (CDCl₃): $\delta = 8.94$ (-, cpr-C), 15.67 (-, cpr-C), 34.90 (-), 40.46 (C_{quat}, cpr-C), 44.10 (-), 48.15 (-), 52.55 (+, CH₃O),

62.96 (+, C-3'), 126.43 (+, C-para), 128.42 (+, 2 C), 128.57 (+, 2 C), 138.43 (C_{quat} , C-ipso), 172.54 (C_{quat} , C=O), 172.91 (C_{quat} , C= O). – MS (70 eV); m/z (%): 288 (39) [M⁺], 260 (21) [M⁺ – C₂H₄], 229 (59) $[M^+ - C_2H_3O_2]$, 201 (32) $[M^+ - C_4H_7O_2]$, 169 (44), 140 (100), 105 (44) $[C_8H_9^+]$. - $C_{16}H_{20}N_2O_3$ (288.4): calcd. C 66.65, H 6.99, N 9.72; found C 66.37, H 7.07, N 9.90. - Product II: 2.47 g (63%) of **5c** ($R_{\rm f}$ = 0.27) as colorless crystals, m.p. 174 °C (ethyl acetate/petroleum ether). – IR (KBr): $\tilde{v} = 3433$ (NH) cm⁻¹, 3269 (NH), 3027, 2973, 1675 (C=O), 1641 (C=O), 1444, 1422, 1326, 1040, 755, 699, 612. - ¹H NMR (CDCl₃): $\delta = 0.79 - 1.10$ (m, 3 H, cpr-H), 1.24-1.33 (m, 1 H, cpr-H), 1.72 (br. s, 1 H, NH), 2.79-2.92 (m, 2 H, CH₂Ph), 3.28-3.40 (m, 1 H), 3.73 (s, 1 H, 6'-H), 3.80 (dd, J = 7.7, J = 14.4 Hz, 1 H), 4.06-4.17 (m, 1 H), 4.46 $(dd, J = 1.7, J = 14.4 Hz, 1 H), 7.14-7.34 (m, 5 H, Ar-H). - {}^{13}C$ NMR (CDCl₃): $\delta = 15.30$ (-, cpr-C), 19.87 (-, cpr-C), 34.75 (-), 41.98 (C_{quat}, cpr-C), 47.51 (-), 52.84 (-), 64.63 (+, C-6'), 126.70 (+, C-para), 128.59 (+, 2 C), 128.89 (+, 2 C), 139.18 (Cquat, Cipso), 168.23 (C_{quat}, C=O), 170.05 (C_{quat}, C=O). - MS (70 eV); m/z (%): 292 (1) [M⁺], 257 (100) [M⁺ - Cl], 229 (2) [M⁺ - Cl - C_2H_4], 200 (21), 173 (10), 144 (11), 104 (29) $[C_8H_8^+]$, 91 (5) $[C_7H_7^+]$. - $C_{15}H_{17}CIN_2O_2$ (292.8): calcd. C 61.54, H 5.85, Cl 12.10, N 9.57; found C 61.77, H 5.84, Cl 11.89, N 9.28.

tert-Butyl Hexahydro-6'-oxo-1'-(2-phenylethyl)spiro(cyclopropane-1,2'-pyrazine)-3'-carboxylate (7): To a solution of 2-phenylethylamine (121 mg, 1.00 mmol) in THF (10 mL) was added dropwise a solution of tert-butyl 2-chloro-2-cyclopropylideneacetate (2-tBu, 189 mg, 1.00 mmol)^[7] in THF (10 mL) at 0 °C. After additional stirring for 4 h at the same temp. the solution was treated with FmocGlyOH (601 mg, 2.02 mmol), EDC (383 mg, 2.00 mmol) and pyridine (158 mg, 2.00 mmol). The reaction mixture was allowed to warm to room temp. during 24 h, washed with aqueous HCl (2 M, 20 mL), H₂O (20 mL), saturated NaHCO₃ (20 mL) and dried (MgSO₄). Evaporation of the solvent gave 580 mg (98%) of the crude product 6 ($R_f = 0.38$, petroleum ether/diethyl ether, 7:1). This product was dissolved in a mixture of dioxane (15 mL) and MeOH (4 mL) and treated with aqueous NaOH (4 m, 1 mL) at 0 °C. After 5 min aqueous HCl (2 M) was added until pH = 8-9and the mixture was dried (Na₂SO₄). The solvent was evaporated and the residue was purified by column chromatography on basic alumina (120 g, CH₂Cl₂/MeOH, 100 : 1) to yield 204 mg (61% overall) of 7 as an amorphous solid ($R_f = 0.30$, $CH_2Cl_2/MeOH$, 100 : 5). – IR (film): $\tilde{v} = 3323$ (NH) cm⁻¹, 2977, 2923, 1726 (C= O), 1670 (C=O), 1454, 1407, 1369, 1347, 1233, 1154, 843, 748, 701. $- {}^{1}H$ NMR (CDCl₃): $\delta = 0.59 - 0.68$ (m, 1 H, cpr-H), 0.89 - 0.98 (m, 1 H, cpr-H), 1.13–1.28 (m, 2 H, cpr-H), 1.47 (s, 9 H, tBu-H), 2.57 (br. s, 1 H, NH), 2.66-2.76 (m, 2 H, CH₂Ph), 3.00 (s, 1 H, 3'-H), 3.24-3.33 (m, 1 H, 5'-H), 3.40-3.48 (m, 1 H, 5'-H), AB system ($\delta_A = 3.64$, $\delta_B = 3.56$, $J_{AB} = 15.9$ Hz, 2 H, CH₂N), 7.16-7.32(m, 5 H, Ar-H). $- {}^{13}$ C NMR (CDCl₃): $\delta = 8.73$ (-, cpr-C), 15.91 (-, cpr-C), 28.07 (+, tBu-C), 35.29 (-), 40.86 (C_{quat}, cpr-C), 44.98 (-), 48.10 (-), 63.45 (+, C-3'), 82.64 (C_{quat}, tBu-C), 126.52 (+), 128.53 (+, 2 C), 128.67 (+, 2 C), 138.63 (C_{quat}, C-ipso), 171.19 $(C_{quat}, C=O)$, 172.68 $(C_{quat}, C=O)$. – MS (70 eV); m/z (%): 330 (8) $[M^+]$, 302 (4) $[M^+ - C_2H_4]$, 274 (23) $[M^+ - C_4H_8]$, 246 (15) $[M^+ - C_2H_4 - C_4H_8]$, 229 (100), 201 (60), 155 (25), 142 (13), 126 (21), 105 (34) $[C_8H_9^+]$. - $C_{19}H_{26}N_2O_3$: calcd. 330.1943; found 330.1943 (HRMS).

Methyl (3'*R*,5'*S*)- and (3'*S*,5'*S*)-5'-Benzylhexahydro-1'-methyl-6'-oxospiro(cyclopropane-1,2'-pyrazine)-3'-carboxylates (9a) and (10a) and (2'*S*,6'*R*)-2'-Benzyl-6'-chlorohexahydro-4'-methylspiro(cyclopropane-1,5'-[1*H*][1,4]diazepine-3',7'-dione (11a): From methyl 2-chloro-2-cyclopropylideneacetate (2-Me, 4.41 g, 30.1 mmol), meth-

ylamine hydrochloride (2.45 g, 36.3 mmol), Et₃N (4.58 g, 45.2 mmol) in THF (30 mL), (S)-BocPheOH (9.12 g, 34.4 mmol) and DMAP (400 mg, 3.27 mmol) in CH₂Cl₂ (50 mL), DCC (7.00 g, 33.9 mmol) in CH₂Cl₂ (20 mL) according to GP 1. The residue was separated by column chromatography on silica gel (250 g, hexane/ diethyl ether, 1:1) to give 10.1 g (79%) of **8a** ($R_f = 0.21$). This product 8a (1.83 g, 4.31 mmol) in CH₂Cl₂ (9 mL) was deprotected with TFA (3.36 g, 29.5 mmol) according to GP 2. Three products were obtained after usual workup and purification of the oily residue by column chromatography on silica gel (100 g, CHCl₃/MeOH, 100 : 8). – Product I ($R_f = 0.20$): 27 mg (2% overall) of **10a** as a colorless oil. $- [\alpha]_D^{20} = -28.2$ (c = 0.21 in MeOH). - IR (film): $\tilde{v} = 3301 \text{ cm}^{-1}$, 2950, 1738 (C=O), 1672 (C=O), 1496, 1436, 1393, 1354, 1217, 1172, 1031, 754, 703. - ¹H NMR (CDCl₃): $\delta = 0.80$ (m_c, 1 H, cpr-H), 0.96 (m_c, 1 H, cpr-H), 1.22 (m_c, 2 H, cpr-H), 2.12 (br. s, 1 H, NH), 2.77 (s, 3 H, CH_3N), 2.85 (dd, J = 8.6, J = 14.6Hz, 1 H, CHHPh), 3.13 (s, 1 H, 3'-H), 3.42 (dd, J = 4.8, J = 14.6Hz, 1 H, CH*H*Ph), 3.73 (s, 3 H, CH₃O), 3.83 (dd, J = 4.8, J = 8.6Hz, 1 H, 5'-H), 7.23-7.37 (m, 5 H, Ar-H). - ¹³C NMR (CDCl₃): $\delta = 8.45 (-, \text{cpr-C}), 15.96 (-, \text{cpr-C}), 30.01 (+, \text{CH}_3\text{N}), 36.25 (-, \text{cpr-C})$ CH₂Ph), 40.92 (C_{quat}, cpr-C), 52.56 (+, CH₃O), 57.05 (+, C-5'), 62.44 (+, C-3'), 126.34 (+, C-para), 128.29 (+, 2 C), 129.31 (+, 2 C), 138.73 (C_{quat}, C-ipso), 173.09 (C_{quat}, C=O), 174.35 (C_{quat}, C= O). – MS (70 eV); m/z (%): 288 (7) [M⁺], 229 (12) [M⁺ – C₂H₃O₂], 197 (100) $[M^+ - C_7H_7]$, 169 (28) $[M^+ - C_7H_7 - C_2H_4]$, 165 (12), 137 (14), 120 (8), 109 (16), 91 (14) $[C_7H_7^+]$, 83 (8), 68 (8). $C_{16}H_{20}N_2O_3$: calcd. 288.1473; found 288.1473 (HRMS). – Product II ($R_f = 0.23$): 320 mg (20% overall) of **9a** as a colorless oil. – $[\alpha]_D^{20} = -44.9$ (c = 0.20 in MeOH). – IR (film): $\tilde{v} = 3326$ (NH) cm^{-1} , 3026, 2952, 1738 (C=O), 1644 (C=O), 1496, 1454, 1431, 1399, 1342, 1295, 1175, 1028, 1003, 753, 701, 666. – ¹H NMR (CDCl₃): $\delta = 0.52-0.65$ (m, 2 H, cpr-H), 0.93 (dt, J = 7.6, J =10.2 Hz, 1 H, cpr-H), 1.32 (dt, J = 6.9, J = 10.2 Hz, 1 H, cpr-H), 2.00 (br. s, 1 H, NH), 2.72 (s, 3 H, CH₃N), 3.00 (s, 1 H, 3'-H), 3.06 (dd, J = 8.2, J = 13.6 Hz, 1 H, CHHPh), 3.24 (dd, J = 3.8, J =13.6 Hz, 1 H, CH*H*Ph), 3.71 (s, 3 H, CH₃O), 4.14 (dd, J = 3.8, $J = 8.1 \text{ Hz}, 1 \text{ H}, 5'\text{-H}, 7.23-7.33 (m, 5 \text{ H}, Ar\text{-H}). - {}^{13}\text{C NMR}$ (CDCl₃): $\delta = 9.39$ (-, cpr-C), 9.70 (-, cpr-C), 28.00 (+, CH₃N), 39.64 (-, CH₂Ph), 41.23 (C_{quat}, cpr-C), 52.28 (+, CH₃O), 57.20 (+, C-5'), 61.95 (+, C-3'), 126.60 (+, C-para), 128.38 (+, 2 C), 129.62 (+, 2 C), $137.88 (C_{quat}, C-ipso)$, $170.95 (C_{quat}, C=O)$, $171.93 (C_{quat}, C=O)$ $(C_{quat}, C=O)$. – MS (70 eV); m/z (%): 288 (5) [M⁺], 229 (12) [M⁺ $C_2H_3O_2$], 197 (100) [M⁺ - C_7H_7], 169 (36) [M⁺ - C_7H_7 -C₂H₄], 165 (12), 137 (15), 120 (8), 109 (20), 91 (10), 81 (8), 68 (7). $-C_{16}H_{20}N_2O_3$: calcd. 288.1473; found 288.1473 (MS). – Product III: 310 mg (19% overall) of **11a** as fine needles, m.p. 199-200 °C (ethanol/H₂O). – IR (KBr): $\tilde{v} = 3454$ (NH) cm⁻¹, 3244 (NH), 3079, 2972, 1678 (C=O), 1659 (C=O), 1496, 1455, 1434, 1399, 1047, 754, 722, 700, 636, 571, 526. – ¹H NMR (CDCl₃ + traces of CD₃OD): $\delta = 1.11-1.21$ (m, 1 H, cpr-H), 1.23-1.32 (m, 1 H, cpr-H), 1.37-1.49 (m, 2 H, cpr-H), 2.66 (br. s, 1 H, NH), 2.88 (dd, J = 9.0, J = 14.6 Hz, 1 H, CHPPh, 3.35 (dd, J = 5.6, J = 14.6)Hz, 1 H, CHHPh), 3.09 (s, 3 H, CH₃N), 3.77 (s, 1 H, 6'-H), 4.80 (dd, J = 5.6, J = 9.0 Hz, 1 H, 2'-H), 7.21-7.34 (m, 5 H, Ar-H).- ¹³C NMR (CDCl₃ + traces of CD₃OD): δ = 15.45 (-, cpr-C), 21.38 (-, cpr-C), 35.60 (+, CH₃N), 36.23 (-, CH₂Ph), 40.67 (C_{quat}, cpr-C), 54.31 (+, C-2'), 65.16 (+, C-6'), 127.30 (+, C-para), 129.03 (+, 2 C), 129.10 (+, 2 C), 135.77 (C_{quat}, C-ipso), 167.75 $(C_{quat}, C=O)$, 170.93 $(C_{quat}, C=O)$. – MS (70 eV); m/z (%): 294/ $292\ (12/37)\ [M^+],\ 257\ (52)\ [M^+-Cl],\ 229\ (56)\ [M^+-Cl-C_2H_4],$ 201 (29) $[M^+ - C_7H_7]$, 173 (26) $[M^+ - C_7H_7 - C_2H_4]$, 146 (16), 120 (28), 110 (100), 82 (27), 68 (16). - C₁₅H₁₇ClN₂O₂ (292.8): calcd. C 61.54, H 5.85, N 9.57; found C 61.86, H 6.01, N 9.80. -

2D-NOESY NMR experiment showed cross-peaks between 2'-H and 6'-H and no cross-peaks between 6'-H and $\mathrm{C}H_2\mathrm{Ph}$.

Methyl (3'R,5'S)- and (3'S,5'S)-Hexahydro-5'-[(indol-3''-yl)methyl]-1'-methyl-6'-oxospiro(cyclopropane-1,2'-pyrazine)-3'carboxylate (9b and 10b) and (2'S,6'R)-6'-Chlorohexahydro-2'-[(indol-3''-yl)methyl]-4'-methylspiro(cyclopropane-1,5'-[1H]-[1,4]diazepine)-3',7'-dione (11b): A suspension of methylamine hydrochloride (1.38 g, 20.5 mmol) and Et₃N (2.60 g, 25.7 mmol) in THF (30 mL) was treated with a solution of methyl 2-chloro-2-cyclopropylideneacetate (2-Me, 2.51 g, 17.1 mmol) in THF (20 mL), (S)-BocTrpOH (10.4 g, 34.2 mmol), DMAP (220 mg, 1.80 mmol) and DCC (7.06 g, 34.2 mmol) in THF (30 mL) according to GP 1. After workup and column chromatography on silica gel (180 g, petroleum ether/ethyl acetate, 1:1), 5.95 g (75%) of **8b** ($R_f = 0.22$) was obtained as a yellow oil. Deprotection of 8b (3.74 g, 8.06 mmol) in CH₂Cl₂ (20 mL) with TFA (7.07 g, 62.0 mmol), usual workup and column chromatography of the oily residue on silica gel (150 g, CH₂Cl₂/MeOH, 100: 5) according to GP 2 afforded three products. Product I ($R_f = 0.35$): 81 mg (2% overall) of **10b** as an amorphous solid. $- [\alpha]_D^{20} = -70.7$ (c = 0.91 in MeOH). - IR (KBr): $\tilde{v} = 3303 \text{ (NH) cm}^{-1}$, 3054, 2950, 2924, 1738 (C=O), 1659 (C= O), 1457, 1432, 1400, 1216, 1171, 744. - ¹H NMR (CDCl₃): $\delta =$ 0.77-1.03 (m, 2 H, cpr-H), 1.06-1.26 (m, 2 H, cpr-H), 2.78 (s, 3 H, CH₃N), 3.14 (dd, J = 7.3, J = 15.3 Hz, 1 H, CHHC₈H₆N), 3.18 (s, 1 H, 3'-H), 3.53 (dd, J = 4.8, J = 15.1 Hz, 1 H, $CHHC_8H_6N$), 3.70 (s, 3 H, CH_3O), 3.95 (t, J = 6.2 Hz, 1 H, 5'-H), 7.08-7.20 (m, 3 H, Ar-H), 7.33 (d, J = 7.4 Hz, 1 H, Ar-H), 7.67 (d, J = 7.3 Hz, 1 H, Ar-H), 8.37 (br. s, 1 H, NH). $- {}^{13}$ C NMR (CDCl₃): $\delta = 8.28$ (-, cpr-C), 15.38 (-, cpr-C), 25.73 (-), $29.91\ (+,\,CH_{3}N),\,41.03\ (C_{quat},\,cpr\text{-}C),\,52.52\ (+,\,CH_{3}O),\,56.15\ (+,\,CH_{3}O),$ C-5'), 62.32 (+, C-3'), 111.14 (+, C-7''), 111.80 (C_{quat}, C-2''), 118.79 (+, C-4'' or C-6''), 119.18 (+, C-6'' or C-4''), 121.71 (+, C-5''), 123.65 (+, C-2''), 127.72 (C_{quat}, C-3a''), 136.10 (C_{quat}, C-7a''), 173.03 (C_{quat} , C=O), 174.51 (C_{quat} , C=O). – MS (70 eV); m/z (%): 327 (11) [M⁺], 268 (2) [M⁺ - C₂H₃O₂], 198 (100) [M⁺ - C_9H_7N], 169 (4), 151 (3), 139 (21), 130 (40) $[C_9H_8N^+]$. -C₁₈H₂₁N₃O₃ (327.4): calcd. C 66.04, H 6.47, N 12.84; found C 66.08, H 6.51, N 12.61. – Product II ($R_f = 0.25$): 819 mg (21% overall) of **9b** as an amorphous solid. $- [\alpha]_D^{20} = -51.3$ (c =0.94 in MeOH). – IR (KBr): $\tilde{v} = 3292$ (NH) cm⁻¹, 3056, 2951, 1737 (C=O), 1628 (C=O), 1458, 1433, 1400, 1342, 1202, 1173, 745. $- {}^{1}H$ NMR (CDCl₃): $\delta = 0.12-0.32$ (m, 2 H, cpr-H), 0.78-0.88 (m, 1 H, cpr-H), 1.18-1.28 (m, 1 H, cpr-H), 2.29 (br. s, 1 H, NH), 2.69 (s, 3 H, CH₃N), 2.91 (s, 1 H, 3'-H), 3.35 (d, J = 4.7 Hz, 2 H, $CH_2C_8H_6N$), 3.67 (s, 3 H, CH_3O), 4.17 (t, J = 5.7 Hz, 1 H, 5'-H), 7.03-7.18 (m, 3 H, Ar-H), 7.35 (d, J = 8.0 Hz, 1 H, Ar-H), 7.65 (d, J = 7.8 Hz, 1 H, Ar-H), 8.60 (br. s, 1 H, NH). $- {}^{13}$ C NMR (CDCl₃): $\delta = 9.00$ (-, cpr-C), 9.19 (-, cpr-C), 27.99 (+, $CH_3N)$, 29.27 (-), 41.51 (C_{quat} , cpr-C), 52.19 (+, CH_3O), 56.41 (+, C-5'), 61.97 (+, C-3'), 111.07 (C_{quat}, C-3''), 111.25 (+, C-7''), 119.21 (+, C-4" or C-6"), 119.34 (+, C-6" or C-4"), 121.94 (+, C-5''), 123.36 (+, C-2''), 127.59 (C_{quat} , C-3a''), 136.38 (C_{quat} , C-7a"), 171.58 (C_{quat} , C=O), 176.51 (C_{quat} , C=O). – MS (70 eV); m/z (%): 327 (7) [M⁺], 268 (3) [M⁺ - C₂H₃O₂], 198 (100) [M⁺ - C_9H_7N], 169 (3), 151 (3), 139 (17), 130 (29) $[C_9H_8N^+]$. -C₁₈H₂₁N₃O₃ (327.4): calcd. C 66.04, H 6.47, N 12.84; found C 65.85, H 6.66, N 12.68. - Product III: 861 mg (22% overall) of 11b as colorless crystals, m.p. 202 °C (ethyl acetate/petroleum ether). – $[\alpha]_D^{20} = -60.3 \ (c = 0.38 \text{ in MeOH}). - IR (KBr): \tilde{v} = 3320 \ (NH)$ $cm^{-1},\,3060,\,2939,\,1660\,(C{=}O),\,1457,\,1431,\,1340,\,1303,\,1098,\,1044,$ 804, 750. – ¹H NMR (CD₃OD): $\delta = 1.17-1.31$ (m, 2 H, cpr-H), 1.48-1.56 (m, 2 H, cpr-H), 3.03-3.12 (m, 1 H, CHHC₈H₆N), 3.09 (s, 3 H, CH₃N), 3.43 (dd, J = 6.6, J = 14.7 Hz, 1 H, CH HC_8H_6N), 4.12 (s, 1 H, 6'-H), 5.13 (t, J = 7.3 Hz, 1 H, 2'-H), 7.01–7.14 (m, 2 H, Ar-H), 7.21 (s, 1 H, Ar-H), 7.35 (d, J = 7.7 Hz, 1 H, Ar-H), 7.60 (d, J = 7.9 Hz, 1 H, Ar-H). $- {}^{13}$ C NMR (CD₃OD): $\delta = 16.39$ (-, cpr-C), 22.57 (-, cpr-C), 27.19 (-), 36.12 (+, CH₃N), 42.72 (C_{quat}, cpr-C), 54.28 (+, C-2'), 67.36 (+, C-6'), 110.73 (+, C-7''), 112.82 (C_{quat}, C-3''), 119.21 (+, C-6''), 120.80 (+, C-4''), 122.94 (+, C-5''), 125.58 (+, C-2''), 128.58 (C_{quat}, C-3a''), 138.56 (C_{quat}, C-7a''), 170.28 (C_{quat}, C=O), 174.12 (C_{quat}, C=O). – MS (70 eV); m/z (%): 333/331 (2/8) [M⁺], 295 (4) [M⁺ – HCl], 202 (1) [M⁺ – C₉H₇N], 130 (100) [C₉H₈N⁺]. – C₁₇H₁₈ClN₃O₂ (331.8): calcd. C 61.54, H 5.47, Cl 10.69, N 12.66; found C 61.31, H 5.67, Cl 10.58, N 12.44. – 2D-NOESY NMR experiment showed cross-peaks between 2'-H and 6'-H.

(7'S,9a'S)- and (7'S,9a'R)-7'-Benzyloctahydro-2'-pentylspiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-triones (12a and 13a): A solution of the α -amino ester 4a (177 mg, 696 μ mol) in CH₂Cl₂ (10 mL) was treated with (S)-BocPheOH (240 mg, 905 µmol) in CH₂Cl₂ (10 mL), EDC (173 mg, 902 µmol) and pyridine (71.6 mg, 905 µmol) according to GP 3. Workup without further purification afforded 297 mg (85%) of the crude coupled products ($R_f = 0.36$, $CH_2Cl_2/MeOH$, 100:2) which were deprotected in CH₂Cl₂ (3 mL) with TFA (1.50 g, 13.2 mmol). Workup, cyclization in DMF (1 mL) at 110 °C for 15 h and crystallization of the residue from ethyl acetate/petroleum ether gave 129 mg (50% from 4a) of 12a and 13a as a 1:1 mixture. Separation on silica gel (75 g, ethyl acetate) gave two fractions. – Fraction I ($R_{\rm f}=0.38$): 52 mg of 13a as colorless crystals, m.p. 128-129 °C (ethyl acetate/ petroleum ether). – $[\alpha]_D^{20} = +7.5$ (c = 0.32 in MeOH). – IR (KBr): $\tilde{v} = 3235$ (NH) cm⁻¹, 2956, 2930, 2870, 1686 (C=O), 1440, 1408, 1347, 1280, 1209, 754, 702. - ¹H NMR (CDCl₃): $\delta =$ 0.82-0.92 (m, 2 H, cpr-H), 0.86 (t, J = 7.2 Hz, 3 H, CH₃), 1.19-1.49 (m, 7 H, cpr-H and pent-H), 1.51-1.83 (m, 1 H, cpr-H), 2.85 (dd, J = 9.8, J = 14.4 Hz, 1 H), 3.09-3.13 (m, 1 H), 3.34-3.44 (m, 1 H), 3.50 (dd, J = 3.8, J = 14.5 Hz, 1 H), 3.76 (s, 1 H, 9a'-H), 3.95 (d, J = 16.3 Hz, 1 H), 4.18 (dd, J = 3.5, J = 9.7Hz, 1 H, 7'-H), 4.85 (d, J = 16.3 Hz, 1 H), 6.01 (s, 1 H, NH), 7.18-7.36 (m, 5 H, Ar-H). $- {}^{13}$ C NMR (CDCl₃): $\delta = 9.25$ (-, cpr-C), 13.27 (-, cpr-C), 13.96 (+, CH₃), 22.26 (-), 28.51 (-), 28.96 (-), 36.88 (-), 38.86 (C_{quat}, cpr-C), 43.49 (-), 45.93 (-), 55.28 (+, C-7'), 62.14 (+, C-9a'), 127.56 (+), 129.13 (+, 2 C), 129.19 (+, 2 C), 135.41 (C_{quat}, C-ipso), 165.30 (C_{quat}, C=O), 165.39 $(C_{quat}, C=O)$, 168.38 $(C_{quat}, C=O)$. – MS (70 eV); m/z (%): 369 (100) $[M^+]$, 354 (7) $[M^+ - CH_3]$, 340 (39) $[M^+ - C_2H_5]$, 326 (31) $[M^+ - C_3H_7]$, 278 (56) $[M^+ - C_7H_7]$, 91 (35) $[C_7H_7^+]$. C₂₁H₂₇N₃O₃ (369.5): calcd. C 68.27, H 7.37, N 11.37; found C 68.57, H 7.30, N 11.24. – Fraction II ($R_f = 0.23$): 55 mg of 12a as colorless crystals, m.p. 139 °C (ethyl acetate/petroleum ether). – $[\alpha]_D^{20} = -47.2 \ (c = 0.70 \text{ in MeOH}). - IR (KBr): \tilde{v} = 3236 \ (NH)$ cm⁻¹, 2957, 2931, 2870, 2846, 1693 (C=O), 1665 (C=O), 1644 (C= O), 1454, 1433, 1411, 1320, 1208, 1030, 759, 705. – ¹H NMR (CDCl₃): $\delta = 0.81 - 0.97$ (m, 2 H, cpr-H), 0.84 (t, J = 7.2 Hz, 3 H, CH₃), 1.04-1.33 (m, 7 H, cpr-H and pent-H), 1.34-1.52 (m, 1 H, cpr-H), 2.73 (s, 1 H, 9a'-H), 3.01-3.07 (m, 1 H), 3.12 (d, J = 5.3Hz, 2 H), 3.24-3.29 (m, 1 H), 3.82 (d, J = 16.5 Hz, 1 H), 4.26 (dd, J = 5.0, J = 8.3 Hz, 1 H, 7'-H, 4.79 (d, J = 16.5 Hz, 1 H), 6.63(s, 1 H, NH), 7.17-7.30 (m, 5 H, Ar-H). - ¹³C NMR (CDCl₃): $\delta = 9.50 (-, cpr-C), 12.93 (-, cpr-C), 13.92 (+, CH₃), 22.21 (-),$ 28.25 (-), 28.83 (-), 39.03 (C_{quat}, cpr-C), 40.02 (-), 42.75 (-), 45.92 (-), 57.30 (+, C-7'), 60.51 (+, C-9a'), 127.59 (+), 128.81 (+, 2 C), 129.80 (+, 2 C), 135.06 (C_{quat}, C-ipso), 165.02 (C_{quat}, C= O), 165.09 (C_{quat} , C=O), 168.12 (C_{quat} , C=O). – MS (70 eV); m/z(%): 369 (91) $[M^+]$, 354 (11) $[M^+ - CH_3]$, 340 (76) $[M^+ - C_2H_5]$, 326 (35) $[M^+ - C_3H_7]$, 278 (86) $[M^+ - C_7H_7]$, 91 (100) $[C_7H_7^+]$.

- C₂₁H₂₇N₃O₃ (369.5): calcd. C 68.27, H 7.37, N 11.37; found C 68.01, H 7.16, N 11.31. - 2D-NOESY NMR spectrum of **12a** displayed cross-peaks between 7'-H and 9a'-H, but no cross-peaks between 9a'-H and CH₂(C-7').

(7'S,9a'S)- and (7'S,9a'R)-2'-Benzyl-7'-[2-(methylthio)ethyl]octahydrospiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'triones (12b and 13b): From α -amino ester 4b (386 mg, 1.41 mmol), (S)-BocMetOH (697 mg, 2.80 mmol) in CH₂Cl₂ (20 mL), pyridine (245 mg, 3.10 mmol) and DCC (577 mg, 2.80 mmol) in CH₂Cl₂ (10 mL) according to GP 3. Column chromatography of the residue on silica gel (75 g, CH₂Cl₂/MeOH, 100 : 2) afforded 550 mg (77%) of the coupled products ($R_{\rm f}=0.4$). Trituration with diethyl ether gave a solid (278 mg, mixture of two diastereomers) and an oil (250 mg, only one diastereomer). The oily fraction was dissolved in CH₂Cl₂ (3 mL) and deprotected with TFA (1.12 g, 9.82 mmol) for 24 h. Standard workup afforded an oil which solidified within 24 h due to spontaneous cyclization at room temp. Recrystallization from aqueous MeOH gave 85 mg of 12b (16% from 4b) as colorless crystals, m.p. 152-153 °C (MeOH/H₂O). $- [\alpha]_D^{20} =$ -59.7 (c = 0.14 in MeOH). - IR (KBr): \tilde{v} = 3454 (NH) cm⁻¹, 2919, 1691 (C=O), 1668 (C=O), 1496, 1456, 1405, 1346, 1240, 1168, 985, 737. - ¹H NMR (CDCl₃ + traces of CD₃OD): δ = 0.70-0.85 (m, 1 H, cpr-H), 0.97-1.11 (m, 2 H, cpr-H), 1.40-1.49 (m, 1 H, cpr-H), 1.97 (m_c, 1 H, 7'-CH₂), 2.10 (s, 3 H, CH₃S), 2.37 (m_c, 1 H, 7'-CH₂), 2.70 (m_c, 2 H, CH₂S), 3.43 (s, 1 H, NH), 3.66 (s, 1 H, 9a'-H), 4.03 (d, J = 15.7 Hz, 1 H), 4.12 (dd, J = 7.4, J = 15.7 Hz, 1 H), 4.12 (dd, J = 15.4 Hz, 1 Hz, 1 Hz, 1 Hz) 4.9 Hz, 1 H, 7'-H), 4.21 (d, J = 15.8 Hz, 1 H), 4.95 (d, J = 15.8 Hz,1 H), 5.09 (d, J = 15.7 Hz, 1 H), 7.15-7.31 (m, 5 H, Ar-H). - 2D-NOESY NMR spectrum of 12b displayed cross-peaks between 7'-H and 9a'-H, but no cross-peaks between 9a'-H and CH₂(C-7'). – ¹³C NMR (CDCl₃): $\delta = 8.76$ (-, cpr-C), 13.73 (-, cpr-C), 15.01 (+, CH₃S), 28.56 (-), 29.89 (-), 39.29 (C_{quat}, cpr-C), 45.77 (-), 48.40 (-), 53.01 (+, C-7'), 62.83 (+, C-9a'), 126.54 (+, 2 C), 127.26 (+, C-para), 128.61 (+, 2 C), 137.67 (Cquat, C-ipso), 166.59 (C_{quat}, C=O), 167.32 (C_{quat}, C=O), 169.85 (C_{quat}, C=O). - MS (70 eV); m/z (%): 375/374/373 (4/12/49) [M⁺], 312 (8) [M⁺ - C_2H_5S], 299 (21) [M⁺ - C_3H_6S], 254 (4), 215 (6), 208 (9) [M⁺- $C_7H_7 - C_3H_6S$], 187 (16), 158 (6), 123 (5), 123 (10), 104 (70), 91 (100) $[C_7H_7^+]$, 61 (22) $[C_2H_5S^+]$. $-C_{19}H_{23}N_3O_3S$: calcd. 373.1460; found 373.1460 (HRMS). - The crystalline fraction was deprotected with TFA (1.12 g, 9.82 mmol). After usual workup, this substance was dissolved in DMF (4 mL) and heated to 90-100 °C overnight. Crystallization from DMF/H₂O yielded 100 mg (19%) of 13b as small needles, m.p. 187-188 °C (MeOH/H₂O). - $[\alpha]_D^{20} = +28.8 \ (c = 0.17 \text{ in MeOH}). - IR (KBr): \tilde{v} = 3450 \ (NH)$ cm⁻¹, 3222 (NH), 2930, 1691 (C=O), 1675 (C=O), 1643 (C=O), 1496, 1416, 1329, 1288, 1246, 1186, 729. - 1H NMR (CDCl₃ + traces of CD₃OD): $\delta = 0.81 - 0.90$ (m, 1 H, cpr-H), 0.98 - 1.18 (m, 2 H, cpr-H), 1.25-1.34 (m, 1 H, cpr-H), 1.90-2.16 (m, 2 H, 7'-CH₂), 2.08 (s, 3 H, CH₃S), 2.43-2.54 (m, 2 H, CH₂S), 2.57 (s, 1 H, NH), 3.89 (s, 1 H, 9a'-H), 4.04 (d, J = 16.2 Hz, 1 H), 4.10 (dd, J = 8.6, J = 5.1 Hz, 1 H, 7'-H, 4.21 (d, J = 15.8 Hz, 1 H), 4.98(d, J = 15.7 Hz, 1 H), 4.99 (d, J = 16.2 Hz, 1 H), 7.13-7.31 (m,5 H, Ar-H). $- {}^{13}$ C NMR (CDCl₃ + CD₃OD): $\delta = 9.47$ (-, cpr-C), 14.29 (-, cpr-C), 15.48 (+, CH₃S), 30.28 (-), 31.97 (-), 40.94 (C_{quat}, cpr-C), 46.66 (-), 48.74 (-), 55.75 (+, C-7'), 62.27 (+, C-9a'), 127.27 (+, 2 C), 128.14 (+, C-para), 129.43 (+, 2 C), 138.20 (C_{quat}, C-ipso), 166.61 (C_{quat}, C=O), 167.96 (C_{quat}, C=O), 171.01 $(C_{\text{quat}}, C=O)$. – MS (70 eV); m/z (%): 375/374/373 (10/32/60) [M⁺], 4 312 (12) [M⁺ - C₂H₅S], 299 (22) [M⁺ - C₃H₆S], 282 (7) [M⁺ C_7H_7], 254 (5), 234 (6), 208 (10) [M⁺- C_7H_7 - C_3H_6S], 187 (18), 104 (25), 91 (100) $[C_7H_7^+]$, 85 (32). - $C_{19}H_{23}N_3O_3S$: calcd. 373.1460; found 373.1460 (HRMS).

(7'S,9a'S)- and (7'S,9a'R)-2',7'-Dibenzyloctahydrospiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-triones (12c) 13c): α-Amino ester 4b (342 mg, 1.25 mmol) in CH₂Cl₂ (6 mL) was treated with (S)-BocPheOH (398 mg, 1.50 mmol), DCC (309 mg, 1.50 mmol) and pyridine (160 mg, 2.02 mmol) in CH₂Cl₂ (3 mL) according to GP 3. Workup and column chromatography on silica gel (50 g, CH₂Cl₂/MeOH, 100 : 5) yielded 543 mg (83%) of the coupled products as a glass-like solid ($R_{\rm f} \approx 0.25$). Deprotection of these products in CH₂Cl₂ (3 mL) with TFA (1.68 g, 14.7 mmol), standard workup, cyclization in DMF (2.5 mL) at 100 °C for 19 h and crystallization from DMF/H₂O gave 288 mg (59% from 4b) of 12c and 13c as a 1:1 mixture. Separation was achieved by column chromatography on neutral alumina (act. III, 70 g, CH₂Cl₂/MeOH, 100 : 1). – Fraction I ($R_f = 0.33$): 116 mg of 12c as cubes or prisms, m.p. 149–151 °C (MeOH/H₂O, dec.). $- [\alpha]_D^{20} = -93.6$ (c = 0.22in MeOH). – IR (KBr): $\tilde{v} = 3433$ (NH) cm⁻¹, 3252 (NH), 3027, 1686 (C=O), 1653 (C=O), 1496, 1417, 1348, 697. - ¹H NMR $(CDCl_3)$: $\delta = 0.82$ (m_c, 1 H, cpr-H), 0.93 (m_c, 1 H, cpr-H), 1.05 $(m_c, 1 \text{ H, cpr-H}), 1.35 \text{ (dt, } J = 6.3, J = 10.4 \text{ Hz}, 1 \text{ H, cpr-H}), 2.82$ (dd, J = 10.5, J = 14.6 Hz, 1 H, 7'-CH₂), 3.53 (dd, J = 3.5, J =14.5 Hz, 1 H, 7'-CH₂), 3.70 (s, 1 H, 9a'-H), 4.10 (d, J = 15.6 Hz, 1 H), 4.19 (dd, J = 3.7, J = 10.3 Hz, 1 H, 7'-H), 4.22 (d, J = 15.8Hz, 1 H), 5.02 (d, J = 16.1 Hz, 1 H), 5.09 (d, J = 16.1 Hz, 1 H), 5.70 (br. s, 1 H, NH), 7.17-7.39 (m, 10 H, Ar-H). - ¹³C NMR $(CDCl_3)$: $\delta = 8.88 (-, cpr-C), 13.65 (-, cpr-C), 36.59 (-), 39.65$ (C_{quat}, cpr-C), 46.06 (-), 48.27 (-), 55.28 (+, C-7'), 62.76 (+, C-9a'), 126.68 (+, 2 C), 127.33 (+), 127.70 (+), 128.68 (+, 2 C), 129.04 (+, 2 C), 129.36 (+, 2 C), 135.33 (C_{quat} , C-ipso), 137.74 (C_{quat}, C-ipso), 165.82 (C_{quat}, C=O), 169.53 (C_{quat}, C=O). - MS $(70 \text{ eV}); m/z \text{ (\%)}: 389 \text{ (40) } [\text{M}^+], 361 \text{ (3) } [\text{M}^+ - \text{C}_2\text{H}_4], 306 \text{ (4)}, 298$ (20) [M⁺ - C₇H₇], 270 (8), 245 (4), 215 (9), 201 (12), 186 (30), 146 (12), 104 (41), 91 (100) $[C_7H_7^+]$. $-C_{23}H_{23}N_3O_3 \cdot 0.75H_2O$ (389.5): calcd. C 68.55, H 6.13, N 10.43; found 68.45, H 6.24, N 9.94. Fraction II ($R_f = 0.24$): 53 mg of 13c as colorless crystals, m.p. 175–182 °C (ethanol/hexane). – $[\alpha]_D^{20} = +31.1$ (c = 0.17 in MeOH). – IR (KBr): $\tilde{v} = 3437$ (NH) cm⁻¹, 3250 (NH), 3029, 2927, 1685 (C=O), 1664 (C=O), 1496, 1454, 1414, 1346, 1316, 753, 732, 702. $- {}^{1}H$ NMR (CDCl₃): $\delta = 0.77 - 0.87$ (m, 1 H, cpr-H), 0.94-0.99 (m, 1 H, cpr-H), 1.07-1.27 (m, 2 H, cpr-H), 2.97 (s, 1 H, 9a'-H), 3.07 (dd, J = 7.6, J = 13.8 Hz, 1 H, 7'-CH₂), 3.20 (dd, J = 4.1, J = 13.9 Hz, 1 H, 7'-CH₂), 3.97 (d, J = 16.5 Hz, 1 H), 4.21 (d, J = 15.6 Hz, 1 H), 4.27 (dd, J = 3.7, J = 7.3 Hz, 1 H, 7'-H), 4.88 (d, J = 15.8 Hz, 1 H), 4.99 (d, J = 16.5 Hz, 1 H), 5.85 (br. s, 1 H, NH), 7.12-7.35 (m, 10 H, Ar-H). - ¹³C NMR $(CDCl_3)$: $\delta = 8.94$ (-, cpr-C), 12.89 (-, cpr-C), 39.99 (-), 40.39 (C_{quat}, cpr-C), 46.15 (-), 47.52 (-), 57.60 (+, C-7'), 60.96 (+, C-9a'), 126.69 (+, 2 C), 127.36 (+), 127.73 (+), 128.69 (+, 2 C), 129.02 (+, 2 C), 129.70 (+, 2 C), 135.07 (C_{quat}, C-ipso), 137.47 (C_{quat}, C-ipso), 164.58 (C_{quat}, C=O), 165.25 (C_{quat}, C=O), 168.84 (C_{quat}, C=O). – MS (70 eV); *m/z* (%): 389 (46) [M⁺], 345 (5), 298 (25) $[M^+ - C_7H_7]$, 270 (10) $[M^+ - C_2H_4 - C_7H_7]$, 215 (8), 201 (11), 186 (22), 146 (7), 120 (7), 104 (30), 91 (100) $[C_7H_7^+]$. -C₂₃H₂₃N₃O₃: calcd. 389.1739; found 389.1739 (HRMS).

X-Ray Crystal Structure Analysis of 12c:^[6] Single crystal from MeOH/H₂O, $0.50 \times 0.50 \times 0.40$ mm, T=133 K, Stoe-Siemens-Huber four-circle diffractometer, Mo- K_{α} (graphite monochromator); $\lambda=71.073$ pm, empirical formula $C_{23}H_{23}N_3O_3 \times 0.75$ H₂O, space group $P2_12_12_1$; unit cell dimensions: a=697.2 pm; b=951.9 pm; c=2965.5 pm; $a=90^{\circ}$; $\beta=90^{\circ}$; $\gamma=90^{\circ}$; $d_{calcd}=1.376$ g/cm³, V=1.9669 nm³, Z=4, $\mu(\text{Mo-}K_{\alpha})=0.095$ mm⁻¹; range for data collection: $2.54 \le \theta \le 27.91^{\circ}$; index ranges: $-9 \le h \le 6$, $-12 \le k \le 12$, $-38 \le l \le 38$; 4379 independent reflections [R(int)=0.0454]. Structure solutions: Direct methods (SHELXS-97^[8]) and

structure refinement (SHELXL-97^[9]): Full-matrix least-squares on F^2 , R values: R1 = 0.0550, wR2 = 0.1052 (for all data with 284 parameters and 3 restraints); goodness-of-fit on $F^2 = 1.059$. Flack-x-parameter = -0.4(12); largest diff. peak and hole 288 and -254 e nm⁻³.

(7'S,9a'S)- and (7'S,9a'R)-7'-[(Indol-3''-yl)methyl]octahydro-2'-(2phenylethyl)spiro(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-triones (12d and 13d): A solution of 4c (166 mg, 576 µmol) in CH₂Cl₂ (10 mL) was treated with (S)-BocTrpOH (227 mg, 746 µmol) in CH₂Cl₂ (5 mL), EDC (143 mg, 746 µmol) and pyridine (59.1 mg, 746 μ mol) according to GP 3. Workup without further purification afforded 268 mg (81%) of the crude coupled products which were deprotected in CH2Cl2 (3 mL) with TFA (1.50 g, 13.2 mmol). Workup, cyclization in DMF (2 mL) at 110 °C for 48 h and crystallization of the residue from CH₂Cl₂/petroleum ether yielded 142 mg (56% from 4c) of a mixture of 12d and 13d. Separation on silica gel (60 g, CH₂Cl₂/MeOH, 100:5) gave two fractions. – Fraction I ($R_f = 0.34$): 51 mg of 12d as colorless crystals, m.p. 120–121 °C (CH₂Cl₂/petroleum ether). $- [\alpha]_D^{20} = -84.9$ $(c = 1.39 \text{ in MeOH}). - IR (KBr): \tilde{v} = 3304 (NH) \text{ cm}^{-1}, 3058,$ 2927, 1681 (C=O), 1457, 1411, 1346, 1264, 1203, 1106, 743, 701. $- {}^{1}H$ NMR (CDCl₃): $\delta = 0.72 - 0.76$ (m, 1 H, cpr-H), 0.98 - 1.25 (m, 3 H, cpr-H), 2.68-2.73 (m, 1 H, $CHHC_8H_6N$), 2.86-3.02 (m, 2 H, CH₂Ph), 3.37-3.41 (m, 1 H, CHHC₈H₆N), 3.59 (s, 1 H, 9a'-H), 3.61-3.71 (m, 2 H, 4'-H), 3.98 (d, J = 15.9 Hz, 1 H, CHHN), 4.19 (dd, J = 3.5, J = 10.4 Hz, 1 H, 7'-H), 4.91 (d, J = 15.9 Hz,1 H, CHHN), 5.80 (s, 1 H, NH), 7.07-7.32 (m, 8 H, Ar-H), 7.38 (d, J = 8.0 Hz, 1 H, Ar-H), 7.54 (d, J = 7.9 Hz, 1 H), 8.33 (s, 1)H, NH). $- {}^{13}$ C NMR (CDCl₃): $\delta = 9.62$ (-, cpr-C), 13.58 (-, cpr-C), 26.73 (-), 34.83 (-), 38.87 (C_{quat}, cpr-C), 45.93 (-), 46.00 (-), 53.60 (+, C-7'), 62.44 (+, C-9a'), 109.28 (C_{quat}, C-3''), 111.60 (+, C-7''), 118.29 (+, C-4'' or C-6''), 119.97 (+, C-6'' or C-4''), 122.74 (+, C-5''), 123.51 (+, C-2''), 126.56 (C_{quat}, C-3a''), 126.56 (+), 128.51 (+, 2 C), 128.82 (+, 2 C), 136.57 (C_{quat}, C-7a''), 138.58 (C_{quat}, C-ipso), 165.71 (C_{quat}, C=O), 166.22 (C_{quat}, C=O), 169.25 $(C_{\text{quat}}, C=O)$. - MS (70 eV); m/z (%): 442 (13) [M⁺], 412 (2) [M⁺ $- CH_4N$], 335 (2) [M⁺ $- CH_4N - C_6H_5$], 313 (2) [M⁺ $- C_9H_7N$], 262 (8), 197 (8), 137 (10), 130 (100) [C₉H₈N⁺], 105 (6) [C₈H₉⁺], 91 (5) $[C_7H_7^+]$. - $C_{26}H_{26}N_4O_3$: calcd. 442.2005; found 442.2004 (HRMS). - 2D-NOESY NMR spectrum of 12d displayed crosspeaks between 7'-H and 9a'-H, but no cross-peaks between 9a'-H and $CH_2(C-7')$. – Fraction II ($R_f = 0.29$): 42 mg of 13d as a pale yellow solid, m.p. 115-117 °C (CH₂Cl₂/petroleum ether). - $[\alpha]_D^{20} = +60.3 \ (c = 0.63 \text{ in MeOH}). - IR (KBr): \tilde{v} = 3307 \ (NH)$ $cm^{-1},\,2923,\,1674\;(C\!=\!O),\,1496,\,1456,\,1418,\,1344,\,1197,\,1103,\,745,$ 701. $- {}^{1}H$ NMR (CDCl₃): $\delta = 0.66-0.89$ (m, 3 H, cpr-H), 0.94-1.05 (m, 1 H, cpr-H), 2.57-2.66 (m, 1 H), 2.71-2.82 (m, 1 H), 2.86 (s, 1 H, 9a'-H), 3.13-3.23 (m, 1 H), 3.29 (d, J = 5.5 Hz, 2 H), 3.49-3.61 (m, 1 H), 3.69 (d, J = 16.5 Hz, 1 H), 4.24 (d, J = 16.5 Hz), 3.0 Hz, 1 H, 7'-H), 4.82 (d, J = 16.5 Hz, 1 H), 6.29 (d, J = 2.4Hz, 1 H, NH), 7.00 (s, 1 H, 2"-H), 7.12-7.29 (m, 7 H, Ar-H), 7.35 (d, J = 7.8 Hz, 1 H, 7''-H), 7.57 (d, J = 7.7 Hz, 1 H, 4''-H), 8.49(s, 1 H, NH). $- {}^{13}$ C NMR (CDCl₃): $\delta = 9.50$ (-, cpr-C), 12.93 (-, cpr-C), 30.06 (-), 34.54 (-), 39.21 (C_{quat}, cpr-C), 44.72 (-), 45.91 (-), 56.57 (+, C-7'), 60.65 (+, C-9a'), 109.03 (C_{quat}, C-3''), 111.32 (+, C-7"), 118.65 (+, C-4" or C-6"), 119.95 (+, C-6" or $\text{C-4}^{\prime\prime}),\ 122.58\ (+,\ \text{C-5}^{\prime\prime}),\ 124.24\ (+,\ \text{C-2}^{\prime\prime}),\ 126.52\ (\text{C}_{\text{quat}},\ \text{C-3a}^{\prime\prime}),$ 126.63 (+), 128.47 (+, 2 C), 128.66 (+, 2 C), 136.16 (C_{quat}, C-7a''), 138.26 (C_{quat}, C-*ipso*), 165.04 (C_{quat}, C=O), 166.09 (C_{quat}, C=O), 168.52 (C_{quat} , C=O). – MS (70 eV); m/z (%): 442 (8) [M^{+}], 313 (4) $[M^+ - C_9H_7N]$, 130 (100) $[C_9H_8N^+]$, 105 (6) $[C_8H_9^+]$. -C₂₆H₂₆N₄O₃: calcd. 442.2005; found 442.2004 (MS).

(6a'S,11a'S)- and (6a'S,11a'R)-2'-Benzyldecahydrospiro(cyclopropane-1,1'-[6H]pyrazino[1,2-a]pyrrolo[1,2-d]pyrazine)-3',6',11'-triones (12e and 13e): From α -amino ester 4b (361 mg, 1.32 mmol), (S)-BocProOH (323 mg, 1.50 mmol), pyridine (160 mg, 2.02 mmol) in CH₂Cl₂ (6 mL) and DCC (309 mg, 1.50 mmol) in CH₂Cl₂ (3 mL) according to GP 3. After workup and column chromatography on silica gel (50 g, CH₂Cl₂/MeOH, 100 : 2.5) 570 mg (92%) of coupled products ($R_{\rm f} = 0.27$) were obtained. These products were deprotected in CH₂Cl₂ (2 mL) with TFA (1.12 g, 9.82 mmol). Further workup, heating in DMF (3 mL) at 120-130 °C for 3 h and evaporation of the solvent gave 340 mg (76% from 4b) of the two diastereomers 12e and 13e as an oil. Separation was achieved by column chromatography on silica gel (50 g, CH₂Cl₂/MeOH, 100 : 2). - Fraction I ($R_f = 0.33$): 120 mg of 12e as colorless crystals, m.p. 254-256 °C. $- [\alpha]_D^{20} = -42.1$ (c = 0.21 in MeOH). - IR (KBr): $\tilde{v} = 3425 \text{ (NH) cm}^{-1}, 2952, 1684 \text{ (C=O)}, 1674 \text{ (C=O)}, 1495, 1419,$ 1351, 1291, 1258, 1244, 1176, 1159, 986, 742, 697. - ¹H NMR (CDCl₃): $\delta = 0.66$ (ddd, J = 10.6, J = 7.5, J = 4.8 Hz, 1 H, cpr-H), 0.88 (ddd, J = 10.6, J = 6.8, J = 4.8 Hz, 1 H, cpr-H), 1.14 (dt, J = 10.1, J = 7.5 Hz, 1 H, cpr-H), 1.59 (dt, J = 10.1, J = 7.2)Hz, 1 H, cpr-H), 1.85-1.97 (m, 1 H, 8'-H), 2.00-2.09 (m, 1 H, 8'-H), 2.28-2.37 (m, 2 H, 7'-H), 3.49 (s, 1 H, 11a'-H), 3.52 (m_c, 2 H, 9'-H), 4.06 (d, J = 15.1 Hz, 1 H), 4.88 (t, J = 8.1 Hz, 6a'-H, 1 H), 4.27 (d, J = 15.8 Hz, 1 H), 4.94 (d, J = 15.2 Hz, 1 H), 5.18 (d, $J = 15.8 \text{ Hz}, 1 \text{ H}, 7.16-7.31 \text{ (m, 5 H, Ar-H)}. - {}^{13}\text{C NMR}$ (CDCl₃): $\delta = 8.85$ (-, cpr-C), 14.77 (-, cpr-C), 23.40 (-, C-7' or C-8'), 27.33 (-, C-8' or C-7'), 39.85 (C_{quat}, cpr-C), 45.30 (-), 45.70 (-), 49.20 (-), 59.40 (+, C-6a'), 64.59 (+, C-11a'), 126.59 (+, 2 C), 127.18 (+, C-para), 128.60 (+, 2 C), 138.11 (Cquat, C-ipso), 163.97 (C_{quat}, C=O), 167.50 (C_{quat}, C=O), 170.60 (C_{quat}, C=O). - MS (70 eV); m/z (%): 339 (30) [M⁺], 311 (2) [M⁺ - C₂H₄], 257 (10), 248 (13) $[M^+ - C_7H_7]$, 224 (100), 220 (18) $[M^+ - C_2H_4 - C_2H_4]$ C_7H_7 , 214 (10), 166 (3), 143 (9), 99 (13), 91 (19) $[C_7H_7^+]$, 83 (9), 69 (12), 56 (40), 44 (100). – Fraction II ($R_f = 0.26$): 13e as colorless crystals, m.p. 193–198 °C (MeOH/H₂O). $- [\alpha]_D^{20} = +41.4$ (c =0.29 in MeOH). – IR (KBr): $\tilde{v} = 3431$ (NH) cm⁻¹, 2950, 1668 (C=O), 1656 (C=O), 1497, 1453, 1408, 1299, 723. - 1H NMR (CDCl₃): $\delta = 0.60$ (dt, J = 11.0, J = 6.5 Hz, 1 H, cpr-H), 0.82 (m_c, 1 H, cpr-H), 1.17-1.45 (m, 2 H, cpr-H), 1.87 (m_c, 2 H, 8'-H), 2.00 (m_c, 1 H, 7'-H), 2.48 (m_c, 1 H, 7'-H), 3.48 (m_c, 1 H, 9'-H), 3.68 (m_c, 1 H, 9'-H), 3.78 (d, J = 18.4 Hz, 1 H), 4.05 (d, J = 16.0Hz, 1 H), 4.11 (m_c, 1 H, 6a'-H), 4.67 (s, 1 H, 11a'-H) 4.85 (d, J =16.2 Hz, 1 H), 5.33 (d, J = 18.4 Hz, 1 H), 7.11-7.32 (m, 5 H, Ar-H). $- {}^{13}$ C NMR (CDCl₃): $\delta = 7.35$ (-, cpr-C), 7.79 (-, cpr-C), 21.72 (-, C-7' or C-8'), 29.97 (-, C-8' or C-7'), 41.84 (Cquat, cpr-C), 44.27 (-), 45.63 (-), 46.01 (-), 58.58 (+, C-6a'), 62.85 (+, C-11a'), 126.22 (+, 2 C), 127.24 (+, C-para), 128.70 (+, 2 C), 136.90 $(\text{C-}\textit{ipso}),\ 159.24\ (\text{C}_{\text{quat}},\ \text{C=O}),\ 164.54\ (\text{C}_{\text{quat}},\ \text{C=O}),\ 165.50\ (\text{C}_{\text{quat}},$ C=O). - MS (70 eV); m/z (%): 339 (81) [M⁺], 311 (8) [M⁺ C_2H_4 , 296 (5), 256 (12), 248 (10) [M⁺ - C_7H_7], 220 (12) [M⁺ - $C_2H_4 - C_7H_7$, 214 (10), 186 (50), 149 (12), 146 (10), 123 (10), 104 (70), 91 (100) $[C_7H_7^+]$, 70 (21). $-C_{19}H_{21}N_3O_3$: calcd. 339.1582; found 339.1582 (HRMS).

X-Ray Crystal Structure Analysis of 12e:^[6] Single crystal from MeOH/H₂O, $0.70 \times 0.70 \times 0.60$ mm, T=133 K, Stoe-Siemens-Huber four-circle diffractometer, Mo- K_a (graphite monochromator); $\lambda=71.073$ pm, empirical formula $C_{19}H_{21}N_3O_3$, space group $P2_12_12_1$; unit cell dimensions: a=955.9 pm; b=1076.8 pm; c=1544.3 pm; $\alpha=90^\circ$; $\beta=90^\circ$; $\gamma=90^\circ$; $d_{\rm calcd}=1.418$ g/cm³, V=1.5896 nm³, Z=4, $\mu({\rm Mo-}K_a)=0.098$ mm⁻¹; range for data collection: $2.31 \le \theta \le 28.39^\circ$; index ranges: $-12 \le h \le 12$, $-14 \le k \le 14$, $-20 \le l \le 20$; 3983 independent reflections [$R({\rm int})=0.0345$]. Structure solutions: direct methods (SHELXS-97^[8]) and structure

refinement (SHELXL-97^[9]); full-matrix least-squares on F^2 , R values: R1 = 0.0463, wR2 = 0.1013 (for all data with 227 parameters and no restraints); goodness-of-fit on $F^2 = 1.284$. Flack-x-parameter = 0.8(11); extinction coefficient = 0.0087; largest diff. peak and hole 279 and -251 e nm⁻³.

(4'S,9a'R)-4-Benzyl-2'-methyloctahydrospiro(cyclopropane-1,1'-[2*H*]pyrazino[1,2-*a*]pyrazine-3',6',9'-trione [14a (\equiv 15a)]: The α -amino ester 9a (320 mg, 1.11 mmol), BocGlyOH (226 mg, 1.29 mmol), pyridine (118 mg, 1.49 mmol) in CH₂Cl₂ (7 mL) was coupled with DCC (266 mg, 1.29 mmol) in CH₂Cl₂ (7 mL) according to GP 3. Workup and column chromatography of the residue on silica gel (60 g, CH₂Cl₂/MeOH, 100:4) afforded 256 mg (52%) of the coupled product ($R_f = 0.24$). This product (179 mg, 402 µmol) was deprotected in CH₂Cl₂ (3 mL) with TFA (1.12 g, 9.82 mmol) and, after workup, cyclized in DMF (2.5 mL) at 60 °C overnight. After cooling down to room temp. the reaction mixture was diluted with H₂O, kept overnight at +5 °C, and crystals were filtered off. A further amount of product was received after extraction with CHCl₃ (3 × 10 mL), washing of the organic layers with H₂O (3 × 4 mL) and drying (Na₂SO₄). The solvent was evaporated in vacuo, and an oily residue was purified on silica gel (10 g, CH₂Cl₂/ MeOH, 15:1). After recrystallization from MeOH, 63 mg of 14a (26% from 9a) as colorless crystals were isolated, m.p. >250 °C. – $[\alpha]_D^{20} = +45.6 \ (c = 0.17 \text{ in MeOH}). - IR \ (KBr): \tilde{v} = 3447 \ (NH)$ cm⁻¹, 3254 (NH), 2926, 1695 (C=O), 1684 (C=O), 1646 (C=O), 1458, 1427, 1396, 1323, 1286, 1224, 1156, 1104, 799, 766, 709, 674, 606, 501. - ¹H NMR (CD₃OD): $\delta = 0.86 - 0.95$ (m, 1 H, cpr-H), 1.18-1.34 (m, 3 H, cpr-H), 2.82 (s, 3 H, CH₃N), 3.26 (dd, J = 5.8, $J = 13.7 \text{ Hz}, 1 \text{ H}, \text{CH}_2\text{Ph}), 3.35 \text{ (dd}, J = 7.7, J = 13.8 \text{ Hz}, 1 \text{ H},$ CH₂Ph), AB system (δ_A = 3.87, δ_B = 3.90, J = 17.9 Hz, 2 H, 7'-H), 4.11 (s, 1 H, 9a'-H), 5.22 (dd, J = 5.9, J = 7.5 Hz, 1 H, 4'-H), 7.19–7.31 (m, 5 H, Ar-H). – ¹³C NMR (CD₃OD): δ = 7.81 (–, cpr-C), 9.98 (-, cpr-C), 28.99 (+, CH₃N), 37.53 (-, CH₂Ph), 42.11 (C_{quat}, cpr-C), 45.04 (-, C-7'), 57.74 (+, C-4' or C-9a'), 59.81 (+, C-9a' or C-4'), 128.09 (+, C-para), 129.53 (+, 2 C), 130.24 (+, 2 C), 137.21 (C_{quat}, C-ipso), 164.59 (C_{quat}, C=O), 164.94 (C_{quat}, C= O), 169.68 (C_{quat}, C=O). – MS (70 eV); *m/z* (%): 313 (80) [M⁺], 270 (6), 255 (12) $[M^+ - C_2H_4NO]$, 222 (55) $[M^+ - C_7H_7]$, 199 (38), 194 (100) [M^+ – C_7H_7 – C_2H_4], 166 (80) [M^+ – C_7H_7 – CO $-C_2H_4$], 137 (38) [166 $-CH_2NH$], 109 (46) [137 $-C_2H_4$], 91 (60) $[C_7H_7^+]$, 68 (30).

X-Ray Crystal Structure Analysis of 14a (=15a):^[6] Single crystal from MeOH/H₂O, $0.60 \times 0.60 \times 0.50$ mm, T=133 K, Stoe-Siemens-Huber four-circle diffractometer, Mo- K_a (graphite monochromator); $\lambda=71.073$ pm, empirical formula $C_{17}H_{19}N_3O_3$, space group $P2_1$; unit cell dimensions: a=865.7 pm; b=1039.4 pm; c=868.8 pm; $\alpha=90^\circ$; $\beta=102.71^\circ$; $\gamma=90^\circ$; $d_{\rm calcd}=1.365$ g/cm³, V=0.7626 nm³, Z=2, $\mu({\rm Mo-}K_a)=0.095$ mm⁻¹; range for data collection: $2.40 \le \theta \le 29.12^\circ$; index ranges: $-11 \le h \le 11$, $-14 \le k \le 14$, $-11 \le l \le 11$; 4032 independent reflections [$R({\rm int})=0.0213$]. Structure solutions: Direct methods (SHELXS-97^[8]) and structure refinement (SHELXL-97^[9]); full-matrix least-squares on F^2 , R values: R1=0.0332, wR2=0.0824 (for all data with 212 parameters and 2 restrains); goodness-of-fit on $F^2=1.052$. Flackx-parameter = 0.5(6); largest diff. peak and hole 238 and -266 e nm⁻³.

(4'S,9a'R)-4'-[(Indol-3''-yl)methyl]-2'-methyloctahydrospiro-(cyclopropane-1,1'-[2H]pyrazino[1,2-a]pyrazine)-3',6',9'-trione [14b (\equiv 15b)]: A solution of α-amino ester 9b (225 mg, 687 μmol) in CH₂Cl₂ (6 mL) was treated with BocGlyOH (156 mg, 890 μmol), EDC (171 mg, 892 μmol) and pyridine (70.6 mg, 893 μmol) according to GP 3. Workup without further purification on silica gel af-

forded 180 mg (54%) of the crude coupled product which was deprotected in CH₂Cl₂ (3 mL) with TFA (1.51 g, 13.2 mmol). Workup, heating at 90 °C in DMF (1 mL) for 15 h, evaporation of the solvent in vacuo and purification of the residue by column chromatography on silica gel (75 g, MeOH/CH₂Cl₂, 100 : 5) yielded 77.5 mg (32% from 9b) of 14b (\equiv 15b) as pale yellow crystals, m.p. >210 °C (MeOH/H₂O, dec.). $- [\alpha]_D^{20} = +103.7$ (c = 0.63 in MeOH). – IR (KBr): $\tilde{v} = 3270$ (NH) cm⁻¹, 2848, 1690 (C=O), 1649 (C=O), 1448, 1426, 1399, 1340, 1176, 1103, 962, 745, 492. -¹H NMR (CD₃OD): $\delta = 0.56-0.65$ (m, 1 H, cpr-H), 0.89-0.98 (m, 1 H, cpr-H), 1.07-1.22 (m, 2 H, cpr-H), 2.63 (s, 3 H, CH₃N), 3.28 (dd, J = 5.6, J = 14.6 Hz, 1 H, $CHHC_8H_6N$), 3.44 (dd, J =5.6, J = 14.6 Hz, 1 H, CH HC_8H_6N), 3.71 (d, J = 18.0 Hz, 1 H, 7'-H), 3.78 (s, 1 H, 9a'-H), 3.82 (d, J = 18.0 Hz, 1 H, 7'-H), 5.13 (t, J = 5.6 Hz, 1 H, 4'-H), 6.82-6.96 (m, 2 H, Ar-H), 6.94 (s, 1)H, Ar-H), 7.18 (d, J = 8.0 Hz, 1 H, Ar-H), 7.40 (d, J = 7.5 Hz, 1 H, Ar-H). $- {}^{13}$ C NMR (CD₃OD): $\delta = 7.69$ (-, cpr-C), 9.89 (-, cpr-C), 27.95 (-), 29.06 (+, CH₃N), 42.91 (C_{quat}, cpr-C), 45.35 (-, C-7'), 58.48 (+, C-4' or C-9a'), 60.67 (+, C-9a' or C-4'), 110.92 (C_{quat}, C-3"), 112.77 (+, C-7"), 119.34 (+, C-6"), 120.36 (+, C-4''), 122.91 (+, C-5''), 125.00 (+, C-2''), 129.22 (C_{quat}, C-3a''), 138.26 (C_{quat} , C-7a''), 164.97 (C_{quat} , C=O), 165.55 (C_{quat} , C=O), 170.77 (C_{quat} , C=O). – MS (70 eV); m/z (%): 352 (36) [M^+], 317 (2), 263 (2), 223 (30) $[M^+ - C_9H_7N]$, 186 (16), 130 (100) $[C_9H_8N^+]$. - C₁₉H₂₀N₄O₃ (352.4): calcd. C 64.76, H 5.72, N 15.90; found C 64.96, H 5.74, N 15.92.

(4'S,7'S,9a'R)- and $(4'R^*,7'S^*,9a'S^*)$ -4'-Benzyl-2'-methyl-7'-[2-(methylthio)ethyl)]octahydrospiro(cyclopropane-1,1'-[2H]pyrazino-[1,2-a]pyrazine)-3',6',9'-triones (14c and 15c): To a solution of (S)-BocMetOH (1.49 g, 5.98 mmol) in CH₂Cl₂ (5 mL) was added dropwise at 0 °C DCC (618 mg, 3.00 mmol) dissolved in CH₂Cl₂ (2 mL). Stirring was continued for 1 h at 0 °C; the precipitate was removed by filtration and α-amino ester 9a (288 mg, 1.00 mmol) in CH₂Cl₂ (2 mL) was added dropwise to the filtrate at 0 °C with stirring, followed by pyridine (980 mg, 12.4 mmol). The reaction mixture was allowed to warm to room temp., and stirring was continued for 3.5 h. To this reaction mixture was added dropwise DCC (206 mg, 1.00 mmol) in CH₂Cl₂ (2 mL) at room temp., and stirring was continued overnight. The precipitate was removed, the filtrate was diluted with CH₂Cl₂ (20 mL) and washed sequentially with cold aqueous HCl (0.5 m, 25 mL), saturated NaHCO₃ (4 × 20 mL), brine, and dried (Na₂SO₄). Solvent was evaporated in vacuo and the residue separated on silica gel (100 g, CH₂Cl₂/MeOH, 100 : 2.5) to give 382 mg (74%) of the coupled products ($R_{\rm f} = 0.38$) as a glasslike material. These products were dissolved in CH₂Cl₂ (4 mL) and deprotected with TFA (1.34 g, 11.7 mmol) according to GP 3. Standard workup, cyclization in DMF (2 mL) at 80-85 °C for 18 h and evaporation of the solvents in vacuo gave 160 mg (41% from 9a) of 14c and 15c. Separation on silica gel (50 g, CH₂Cl₂/MeOH, 30:1) yielded two fractions. – Fraction I ($R_f = 0.30$): 31 mg (8% from 9a) of 15c as colorless crystals, m.p. 158-159 °C (MeOH/ H_2O). – $[\alpha]_D^{20} = -0.5$ (c = 0.22 in MeOH). – IR (KBr): $\tilde{v} =$ 3426 (NH) cm⁻¹, 3250 (NH), 2920, 1659 (C=O), 1389, 1334, 1291, 1178, 1033, 978, 756, 700. - ¹H NMR (CDCl₃ + traces of CD₃OD): $\delta = 0.78$ (dt, J = 6.0, J = 10.9 Hz, 1 H, cpr-H), 1.09-1.25 (m, 2 H, cpr-H), 1.38 (dt, J = 6.0, J = 10.7 Hz, 1 H, cpr-H), 1.74-1.88 (m, 2 H, 7'-CH₂ and NH), 2.06 (s, 3 H, H₃CS), 2.25-2.34 (m_c, 1 H, 7'-CH₂), 2.62 (m_c, 2 H, CH₂S), 2.78 (s, 3 H, CH_3N), 3.32 (m_c, 2 H, CH_2Ph), 3.82 (s, 1 H, 9a'-H), 4.06 (dd, J =4.3, J = 7.5 Hz, 1 H, 7'-H), 5.28 (t, J = 5.8 Hz, 1 H, 4'-H), 7.16-7.27 (m, 5 H, Ar-H). $- {}^{13}$ C NMR (CDCl₃): $\delta = 7.66$ (-, cpr-C), 10.05 (-, cpr-C), 15.00 (+, CH₃S), 28.41 (+, CH₃N), 30.05 (-), 32.20 (-), 36.65 (-, CH₂Ph), 40.53 (C_{quat}, cpr-C), 53.22 (+),

56.57 (+), 59.04 (+), 127.18 (+, C-para), 128.60 (+, 2 C), 129.33 (+, 2 C), 136.28 (C_{quat}, C-*ipso*), 163.48 (C_{quat}, C=O), 164.47 (C_{quat}, C=O), 168.24 (C_{quat}, C=O). – MS (70 eV); *m/z* (%): 389/388/387 (7/24/100) [M⁺], 326 (40) [M⁺ - C₂H₅S], 313 (95) [M⁺ - C₃H₆S], 268 (36) $[M^+ - C_7H_7 - C_2H_4]$, 222 (68) $[M^+ - C_7H_7 - C_3H_6S]$, 165 (32) [222 $- C_2H_3NO]$, 91 (28) $[C_7H_7^+]$, 61 (35) $[C_2H_5S^+]$. - $C_{20}H_{25}N_3O_3S$: calcd. 387.1616; found 387.1616 (HRMS). - 2D-NOESY NMR experiment showed cross-peaks between the signals of 9a'-H and CH₂Ph and strong cross-peaks between 9a'-H and 7'-H. - Fraction II ($R_f = 0.24$): 60 mg (16% from **9a**) of **14c** as colorless crystals, m.p. 138-139 °C (MeOH/H₂O). - $[\alpha]_D^{20}$ = +3.5 (c = 0.31 in MeOH). - IR (KBr): \tilde{v} = 3458 (NH) cm⁻¹, 3254 (NH), 2919, 1685 (C=O), 1653 (C=O), 1497, 1425, 1329, 1293, 1226, 1161, 1030, 937, 748, 701. – ¹H NMR (CDCl₃ + traces of CD₃OD): $\delta = 0.80 - 0.95$ (m, 1 H, cpr-H), 1.15 (dt, J = 6.6, J =10.9 Hz, 1 H, cpr-H), 1.25-1.40 (m, 2 H, cpr-H), 1.82-1.93 (m, 3 H), 1.98 (s, 3 H, CH_3S), 2.02 (m_c, 1 H, CH_2S), 2.42 (s, 1 H, NH), 2.73 (s, 3 H, CH₃N), 3.15 (dd, J = 9.3, J = 14.0 Hz, 1 H, CHHPh), 3.36 (dd, J = 4.9, J = 14.0 Hz, 1 H, CH HPh), 4.06 (t, J = 4.2 Hz,1 H, 7'-H), 4.21 (s, 1 H, 9a'-H), 5.46 (dd, J = 4.9, J = 9.2 Hz, 1 H, 4'-H), 7.15-7.35 (m, 5 H, Ar-H). - 13 C NMR (CDCl₃ + traces of CD₃OD): $\delta = 6.54$ (-, cpr-C), 8.06 (-, cpr-C), 14.98 (+, CH₃S), 27.79 (+, CH₃N), 28.16 (-), 31.85 (-), 36.51 (-, CH₂Ph), 41.98 $(C_{\text{quat}}, \text{cpr-C}), 53.38 (+), 55.87 (+), 57.92 (+), 127.11 (+, C-para),$ 128.49 (+, 2 C), 129.30 (+, 2 C), 136.06 (C_{quat}, C-ipso), 162.89 (C_{quat}, C=O), 164.40 (C_{quat}, C=O), 167.86 (C_{quat}, C=O). - MS (70 eV); m/z (%): 389/388/387 (7/24/100) [M+], 326 (27) [M+] C_2H_5S], 313 (68) $[M^+ - C_3H_6S]$, 296 (46) $[M^+ - C_7H_7]$, 268 (58) $[M^+ - C_7H_7 - C_2H_4]$, 222 (40) $[M^+ - C_7H_7 - C_3H_6S]$, 165 (33) [222 - CH₃NCO], 144 (30), 109 (16), 91 (23) [C₇H₇⁺]. -C₂₀H₂₅N₃O₃S: calcd. 387.1616; found 387.1616 (HRMS).

X-Ray Crystal Structure Analysis of 14c:^[6] Single crystal from MeOH/H₂O, $0.60 \times 0.50 \times 0.50$ mm, T=133 K, Stoe-Siemens-Huber four circle diffractometer, Mo- K_{α} (graphite monochromator); $\lambda=71.073$ pm, empirical formula $C_{20}H_{25}N_3O_3S$, space group $P2_12_12_1$; unit cell dimensions: a=873.6 pm; b=933.2 pm; c=4737.8 pm; $\alpha=90^{\circ}$; $\beta=90^{\circ}$; $\gamma=90^{\circ}$; $d_{calcd}=1.333$ g/cm³, V=3.8625 nm³, Z=4, $\mu(Mo-K_{\alpha})=0.193$ mm⁻¹; range for data collection: $1.72 \le \theta \le 23.25^{\circ}$; index ranges: $-9 \le h \le 9$, $-10 \le k \le 10$, $-55 \le l \le 44$; 5558 independent reflections [R(int)=0.0683]. Structure solutions: Direct methods (SHELXS-97^[8]) and structure refinement (SHELXL-97^[9]); full-matrix least-squares on F^2 , R values: R1=0.0586, wR2=0.0717 (for all data with 500 parameters and no restraints); goodness-of-fit on $F^2=0.996$. Flack-x-parameter =0.004(7); extinction coefficient =0.0046; largest diff. peak and hole 238 and =172 e nm⁻³.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 416, Project A3) and the Bayer AG. C. F. is particularly grateful to the Bayer AG for a two months stay in their Pharma Research Center, Wuppertal. The authors are grateful to Dr. M. Noltemeyer, Institut für Anorganische Chemie der Universität Göttingen, for his advice on X-ray crystal structure determinations and to R. Machinek, Institut für Organische Chemie der Universität Göttingen, for 2D-NOESY NMR experiments and to Dr. B. Knieriem for his careful reading of the manuscript.

^{[1] [1}a] T. Liese, F. Seyed-Mahdavi, A. de Meijere, Org. Synth. 1990, 69, 148-153. — [1b] M. Es-Sayed, C. Gratkowski, N. Krass, A. I. Meyers, A. de Meijere, Synlett 1992, 962-964. — [1c] M. Es-Sayed, C. Gratkowski, N. Krass, A. I. Meyers, A. de Meijere,

FULL PAPER

Tetrahedron Lett. 1993, 34, 289–292. – [1d] M. Es-Sayed, T. Heiner, A. de Meijere, Synlett 1993, 57–58. – [1e] H. Primke, G. S. Sarin, S. Kohlstruk, G. Adiwidjaja, A. de Meijere, *Chem. Ber.* **1994**, *127*, 1051–1064. – [17] L. Hadjiarapoglou, I. Klein, D. Spitzner, A. de Meijere, *Synthesis* **1996**, 525–528. – [18] A. de Meijere, L. Hadjiarapoglou, M. Noltemeyer, H.-J. Gutke, I. Klein, D. Spitzner, Eur. J. Org. Chem. 1998, 441–451. – Reviews: [Ih] A. de Meijere, L. Wessjohann, Synlett 1990, 20–32. – [Iii] A. de Meijere in New Aspects of Organic Chemistry II, Proceedings of the Fifth International Kyoto Conference on New Aspects of Organic Chemistry – IKCOC 5, Kyoto Nov. 11–15, 1991, Y. Ohshiro, Z. Yoshida, Eds. Kodansha: Tokyo, 1992, 181-213.

For recent publications on peptidomimetics, see: [2a] M. A. Marx, A.-L. Grillot, C. T. Louer, K. A. Beaver, P. A. Bartlett, J. Am. Chem. Soc. 1997, 119, 6153–6167. – [2b] L. R. Smith, P. A. Bartlett, *Molecules Online* **1998**, 2, 58–62. – [2c] S. Hanessian, G. McNaughton-Smith, H.-G. Lombart, W. D. Lubell,

[3] [3a] M. Rink, K. Feiden, *Arch. Pharm (Weinheim)* **1962**, *295*, 121–126. – [3b] H. J. Beim, A. R. Day, *J. Heterocycl. Chem.*

1977, 14, 307-308. - [3c] S. Gubert, C. Braojos, A. Sacristán, J. A. Ortiz, Synthesis 1991, 318-320.

[4] G. W. H. Cheseman in The Chemistry of Heterocyclic Com-

pounds, 1979, Wiley, New York, pp. 575–582.

[5] [5a] M. Robert, M. Barbier, E. Lederer, L. Roux, K. Biemann, W. Vetter, *Bull. Soc. Chim. Fr.* 1962, 187–188. – [5b] E. Hardegger, P. Liechti, L. M. Jackman, A. Boller, P. A. Plattner, Helv. Chim. Acta 1963, 60-74.

[6] Further details of the crystal structure investigations may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Germany), on quoting the deposit numbers CSD-410046, -410047, -410048, -410049, -410050 (e-mail: CRYSDATA@FIZ-Karsruhe.DE).

A. de Meijere, S. Teichmann, D. Yu, J. Kopf, M. Oly, N. von Thienen, *Tetrahedron* 1989, 45, 2957–2968. G. M. Sheldrick, SHELXS-97, *Program for Solution of Crystal*

Structures, University of Göttingen, Germany, 1997. G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

Received October 20, 1998 [O98463]